[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 11, Issue 1 (4-2022) ::
ieijqp 2022, 11(1): 30-43 Back to browse issues page
A Modified Step-Up Transformerless Inverter with Common-Ground Based on Semi-Quasi-Z-Source Topology
Meraj Noroozi1 , Farhad Haghjoo * 1, Hamid Javadi1
1- Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
Abstract:   (2890 Views)

There is an increasing demand for low-cost single-phase DC–AC inverters in many applications such as PV systems. PV system may be used without the transformer to improve efficiency and make the whole system lighter, smaller, and easier to install. Using transformerless topology, the system efficiency may be increased by about 2%, and the related cost may be decreased by about 25%. There are large leakage currents in transformerless topologies, especially in photovoltaic systems, where safety issues and electromagnetic interference problems often occur. To overcome such disadvantages, common-ground topologies can be used, which minimize the leakage current of the transformerless inverter ones. The transformerless semi-quasi-Z-source inverter (SqZS) with a common-ground structure offers many advantages over conventional single-phase inverters. Leakage current elimination, high power density, lower components, and low-cost features make it an attractive option as a micro-inverter in photovoltaic applications. The basic topology of SqZSI is especially suitable for a PV module in the low-voltage application as a low-cost micro-inverter with high-voltage SiC switching devices. However, the unity voltage gain is one of the disadvantages of the SqZS inverter, which is referred to as a drawback; In other words, the conventional structure of SqZS is not able to step up the voltage and the maximum amplitude of AC voltage that can be extracted is equal to the input DC voltage; Therefore, in this paper, a modified structure of single-phase inverter (MSqZS) is proposed to achieve voltage boost capability. The voltage boost is achieved in a single-stage conversion just by adding an additional series DC blocking capacitor to the basic inverter. It also maintains the common-ground feature. Nonlinear sinusoidal modulation (NLSPWM) is modified to allow the SqZS basic structure to achieve high voltage gain. However, the proposed inverter is modified in topology and modulation; its complexity is not increased in comparison to the basic SqZSI. The proposed inverter has the least number of components than the similar step-up common-ground topologies. In this paper, the closed-loop control is proposed to improve the performance of the MSqZS under variable input voltage as well as output load and compensation for the undesired and non-ideal effect of the parasitic elements. In addition, the proposed inverter is also capable to generate reactive power. Also, the design considerations for series capacitor is analysed for proper capacitor selection. The simulation and experimental results under various closed-loop and open-loop scenarios comply with the IEEE Std 1547 and verify the appropriate performance of the proposed inverter.

Keywords: Impedance source inverter, Voltage boost, seies capacitor, Common-ground, Transformerless, Photovoltaic micro-inverter
Full-Text [PDF 3676 kb]   (1179 Downloads)    
Type of Study: Research |
Received: 2021/07/12 | Accepted: 2021/12/5 | Published: 2022/04/26
References
1. Ahmed, T., Soon, T. K., & Mekhilef, S. (2014). A single phase doubly grounded semi-Z-source inverter for photovoltaic (PV) systems with maximum power point tracking (MPPT). Energies, 7(6), 3618-3641. https://doi.org/10.3390/en7063618 [DOI:10.3390/en7063618.]
2. Araújo, S. V., Zacharias, P., & Mallwitz, R. (2009). Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems. IEEE Transactions on Industrial Electronics, 57(9), 3118-3128. [DOI:10.1109/TIE.2009.2037654]
3. Barzegarkhoo, R., Siwakoti, Y., Aguilera, R. P., Khan, N., Lee, S. S., & Blaabjerg, F. (2021). A Novel Dual-Mode Switched-Capacitor Five-Level Inverter With Common-Ground Transformerless Concept. IEEE Transactions on Power Electronics. [DOI:10.1109/TPEL.2021.3074517]
4. Cao, D., Jiang, S., Yu, X., & Peng, F. Z. (2011). Low-cost semi-Z-source inverter for single-phase photovoltaic systems. IEEE Transactions on Power Electronics, 26(12), 3514-3523. https://doi.org/10.1109/TPEL.2011.2148728 [DOI:10.1109/TPEL.2011.2148728.]
5. Cao, D., & Peng, F. Z. (2009). A Family of Z-source and Quasi-Z-source DC-DC Converters. 1097-1101. [DOI:10.1109/APEC.2009.4802800]
6. Darwish, H. A., & Fikri, M. (2006). Practical considerations for recursive DFT implementation in numerical relays. IEEE Transactions on Power Delivery, 22(1), 42-49. [DOI:10.1109/TPWRD.2006.874642]
7. Ding, Chiang, P., Miao, & Blaabjerg, F. (2013). Generalized multicell switched-inductor and switched-capacitor Z-source inverters. IEEE Transactions on Power Electronics, 28(2), 837-848. https://doi.org/10.1109/TPEL.2012.2204776 [DOI:10.1109/TPEL.2012.2204776.]
8. Escobar, G., Martinez-Rodriguez, P. R., Iturriaga-Medina, S., Mayo-Maldonado, J. C., Lopez-Sarabia, J., & Micheloud-Vernackt, O. M. (2019). Mitigation of leakage-ground currents in transformerless grid-tied inverters via virtual-ground connection. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(3), 3111-3123. [DOI:10.1109/JESTPE.2019.2933399]
9. Gambhir, A., Mishra, S. K., & Joshi, A. (2018). A modified PWM scheme to improve performance of a single-phase active-front-end impedance source inverter. IEEE Transactions on Industry Applications, 55(1), 928-942. [DOI:10.1109/TIA.2018.2867605]
10. Ghoshal, A., & John, V. (2010). Anti-windup Schemes for Proportional Integral and Proportional Resonant Controller. National Power Electronics Conference.
11. Hu, X., Ma, P., Gao, B., & Zhang, M. (2019). An integrated step-up inverter without transformer and leakage current for grid-connected photovoltaic system. IEEE Transactions on Power Electronics, 34(10), 9814-9827. [DOI:10.1109/TPEL.2019.2895324]
12. Huang, L., Zhang, M., Hang, L., Yao, W., & Lu, Z. (2013). A family of three-switch three-state single-phase Z-source inverters. IEEE Transactions on Power Electronics, 28(5), 2317-2329. https://doi.org/10.1109/TPEL.2012.2218132 [DOI:10.1109/TPEL.2012.2218132.]
13. Khan, D., Khan, M. M., Ali, Y., Ali, A., & Hussain, I. (2019). Resonance Mitigation and Performance Improvement in Distributed Generation based LCL Filtered Grid Connected Inverters. International Journal of Advanced Computer Science and Applications, 10(12). https://doi.org/10.14569/IJACSA.2019.0101208 [DOI:10.14569/IJACSA.2019.0101208.]
14. Khan, M. N. H., Forouzesh, M., Siwakoti, Y. P., Li, L., Kerekes, T., & Blaabjerg, F. (2019). Transformerless inverter topologies for single-phase photovoltaic systems: A comparative review. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(1), 805-835. [DOI:10.1109/JESTPE.2019.2908672]
15. Kim, K., Cha, H., Kim, H., & Member, S. (2016). A New Single-Phase Switched-Coupled-Inductor DC-AC Inverter for Photovoltaic Systems. IEEE Transactions on Power Electronics, 2(c). https://doi.org/10.1109/TPEL.2016.2606489 [DOI:10.1109/TPEL.2016.2606489.]
16. Lee, S. S., Siwakoti, Y. P., Lim, C. S., & Lee, K.-B. (2020). An improved PWM technique to achieve continuous input current in common-ground transformerless boost inverter. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12), 3133-3136. [DOI:10.1109/TCSII.2020.2967899]
17. Liu, H., Ji, Y., Yong, F., Wu, F., & Wheeler, P. (2019). Single-stage impedance source inverters with quasi-DC--DC output cell for working in dual inductor current modes. IET Power Electronics, 12(6), 1585-1592. [DOI:10.1049/iet-pel.2018.5263]
18. Long, B., Zhang, M., Liao, Y., Huang, L., & Chong, K. T. (2019). An overview of DC component generation, detection and suppression for grid-connected converter systems. IEEE Access, 7, 110426-110438. [DOI:10.1109/ACCESS.2019.2934175]
19. Lopez, O., Freijedo, F. D., Yepes, A. G., Fernandez-Comesana, P., Malvar, J., Teodorescu, R., & Doval-Gandoy, J. (2010). Eliminating ground current in a transformerless photovoltaic application. IEEE Transactions on Energy Conversion, 25(1), 140-147. [DOI:10.1109/TEC.2009.2037810]
20. McGrath, B. P., Holmes, D. G., & Galloway, J. J. H. (2005). Power converter line synchronization using a discrete Fourier transform (DFT) based on a variable sample rate. IEEE Transactions on Power Electronics, 20(4), 877-884. [DOI:10.1109/TPEL.2005.850944]
21. Mekhilef, S., & Ahmed, T. (2015). Semi-Z-source inverter topology for grid-connected photovoltaic system. IET Power Electronics, 8(1), 63-75. https://doi.org/10.1049/iet-pel.2013.0486 [DOI:10.1049/iet-pel.2013.0486.]
22. Meneses, D., Blaabjerg, F., García, Ó., & Cobos, J. A. (2013). Review and comparison of step-up transformerless topologies for photovoltaic AC-module application. IEEE Transactions on Power Electronics, 28(6), 2649-2663. https://doi.org/10.1109/TPEL.2012.2227820 [DOI:10.1109/TPEL.2012.2227820.]
23. Myrzik, J. M. A., & Calais, M. (2003). String and module integrated inverters for single-phase grid connected photovoltaic systems-a review. 2003 IEEE Bologna Power Tech Conference Proceedings, 2, 8--pp. [DOI:10.1109/PTC.2003.1304589]
24. Nguyen, M.-K., Cho, G.-B., & Lim, Y.-C. (2016). Switched-boost network-based single-phase boost DC--AC converter. IET Power Electronics, 9(14), 2723-2730. [DOI:10.1049/iet-pel.2016.0243]
25. Photovoltaics, D. G., & Storage, E. (2018). IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces. IEEE Std, 1547-2018.
26. Sarikhani, A., Takantape, M. M., & Hamzeh, M. (2020). A Transformerless Common-Ground Three-Switch Single-Phase Inverter for Photovoltaic Systems. 35(9), 8902-8909. [DOI:10.1109/TPEL.2020.2971430]
27. Shen, R., & Chung, H. S.-H. (2020). Mitigation of ground leakage current of single-phase PV inverter using hybrid PWM with soft voltage transition and nonlinear output inductor. IEEE Transactions on Power Electronics, 36(3), 2932-2946. [DOI:10.1109/TPEL.2020.3016867]
28. Siwakoti, Y. P., & Blaabjerg, F. (2018). Common-ground-type transformerless inverters for single-phase solar photovoltaic systems. IEEE Transactions on Industrial Electronics, 65(3), 2100-2111. https://doi.org/10.1109/TIE.2017.2740821 [DOI:10.1109/TIE.2017.2740821.]
29. Standard. (n.d.). Automatic Disconnection Device Between a Generator and the Public Low-Voltage Grid. VDE V 0126-1-1, 2006.
30. Tang, Y., Xie, S., & Zhang, C. (2010). Single-phase Z-source inverter. IEEE Transactions on Power Electronics, 26(12), 3869-3873. [DOI:10.1109/TPEL.2009.2039955]
31. Vázquez, N., Rosas, M., Hernández, C., Vázquez, E., & Perez-Pinal, F. J. (2015). A new common-mode transformerless photovoltaic inverter. IEEE Transactions on Industrial Electronics, 62(10), 6381-6391. [DOI:10.1109/TIE.2015.2426146]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Noroozi M, Haghjoo F, Javadi H. A Modified Step-Up Transformerless Inverter with Common-Ground Based on Semi-Quasi-Z-Source Topology. ieijqp 2022; 11 (1) :30-43
URL: http://ieijqp.ir/article-1-831-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 1 (4-2022) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.05 seconds with 40 queries by YEKTAWEB 4645