[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 10, Issue 3 (10-2021) ::
ieijqp 2021, 10(3): 62-74 Back to browse issues page
Presenting an integrated model of organizational ambidexterity and network data envelopment analysis in order to evaluate the efficiency of regional electricity companies in Iran
Mohammd Reza Khosravi1 , Kambiz Shahroodi * 1, Alireza Amirteimoori2 , Narges Delafrooz1
1- Department of Busines Management ,Rasht Branch, Islamic Azad University, Rasht, Iran
2- Department of Mathematics ,Rasht Branch, Islamic Azad University, Rasht, Iran
Abstract:   (341 Views)
The electricity industry is one of the most important infrastructure industries in any country, which is very important due to its capitalization, increasing efficiency and productivity. Accordingly, the main idea of ​​this study is to present a new model for evaluating the efficiency of regional electricity companies in Iran by combining the concept of organizational dual power and network data envelopment analysis technique. The proposed model is based on the concept of dual power. Dualism is one of the newest topics in the field of organizational and management issues, which can be defined as the organization's ability to focus on exploitation (use of existing capabilities) and exploration (discovery of new capabilities). In this study, with the help of network models of data envelopment analysis, the internal processes of 16 regional electricity companies in the form of two stages of "design and development" and "operation" in 1397 were analyzed and the ambiguity and efficiency of companies were calculated. The results of evaluating the efficiency of companies with the proposed model indicate that although the average of the entire electricity industry has an acceptable score in equilibrium and combined dual power, but the balance dual power score of regional power companies shows between the efficiency of design and development sectors and There is a significant difference in the operation of companies, and not paying attention to the reasons for this difference can challenge the electricity industry in carrying out its missions in the coming years.
Keywords: Ambidexterity, Efficiency evaluation, Network data envelopment analysis, Iran electricity industry, Regional electricity company
Full-Text [PDF 1507 kb]   (98 Downloads)    
Type of Study: Research |
Received: 2021/03/7 | Accepted: 2021/08/28 | Published: 2021/09/11
References
1. Azadeh, A., Haghighi, S., Zarrin, M. & Khaefi, S. (2015). Performance evaluation of Iranian electricity distribution units by using stochastic data envelopment analysis. International Journal of Electrical Power & Energy Systems. 73. 919-931. [DOI:10.1016/j.ijepes.2015.06.002]
2. Banker. R,D. Charnes, A., & Cooper,W,W., (1984). Some Models for Estimating Technical and Scale Efficiencies in Data Envelopment Analysis. Management Science, 30: 1078-92. [DOI:10.1287/mnsc.30.9.1078]
3. Birkinshaw, J., & Gupta, K., (2013). Clarifying the distinctive contribution of ambidexterity to the field of organization studies. The Academy of Management Perspectives, amp-2012. [DOI:10.5465/amp.2012.0167]
4. Çelen, A., (2013a). A review and synthesis of empirical studies on technical efficiency measurement in Turkish electricity market. Competition Journal (published by Turkish Competition Authority), 14 (2) , 43-64.
5. Çelen, A., (2013b). Efficiency and productivity (TFP) of the Turkish electricity distribution companies: An application of two-stage (DEA & Tobit) analysis, Energy Policy, 63, 300-310. [DOI:10.1016/j.enpol.2013.09.034]
6. Charnes, A., Cooper, W. W., and Rhodes, E., (1978). Measuring the efficiency of decision- making units. European Journal of Operational Research, 2: 429-44. [DOI:10.1016/0377-2217(78)90138-8]
7. Chen, C., & Yan, H. , (2011). Network DEA model for supply chain performance evaluation. European Journal of Operational Research, 213(1): 147-155. [DOI:10.1016/j.ejor.2011.03.010]
8. Cook, W.D., Zhu, J., Bi, G. & Yang, F., (2010). Network DEA: additive efficiency decomposition. European Journal of Operational Research, 207: 1122-9. [DOI:10.1016/j.ejor.2010.05.006]
9. Derbyshire, J. (2014). The impact of Ambidexterity on enterprise performance: Evidence from 15 countries and 14 sectors, Technovation, 34 (10), pp. 574-581. [DOI:10.1016/j.technovation.2014.05.010]
10. Duncan, R. B., (1976). The ambidextrous organization: Designing dual structures for innovation. The management of organization, 1, 167-188.
11. Fallahi, A., Fallahi, F., Sarhadi, H., Ghaderi, S.F. & Ebrahimi, R., (2019). Application of a robust data envelopment analysis model for performance evaluation of electricity distribution companies, International Journal of Energy Sector Management,. 15 (4), 724-742. [DOI:10.1108/IJESM-08-2018-0008]
12. Fare, R., & Grosskopf, S., (2000). Network DEA. socio-economic plannig science, 34: 35-49. [DOI:10.1016/S0038-0121(99)00012-9]
13. Farell, M., (1957). The measurement of productive efficiency. Journal of the Royal Statistics Society, Series A, 120 (3): 253-281. [DOI:10.2307/2343100]
14. Gomez-Calvet, R., Conesa, D., Gómez-Calvet, A.R. & Tortosa-Ausina, E., (2014). Energy efficiency in the European :union:: What can be learned from the joint application of directional distance functions and slacks-based measures?, Applied Energy, 132, 137-154. [DOI:10.1016/j.apenergy.2014.06.053]
15. Hoefs, j. (2012). The relationship between Contextual Ambidexterity and Innovative Ambidexterity: The mediating role of Knowledge Sharing Ambidexterity. Master thesis. University of Amsterdam,
16. Hsu, Ch., Lien, Y. & Chen, H., (2013). International ambidexterity and firm performance in small emerging economies, Journal of World Business, 48, 58-67. [DOI:10.1016/j.jwb.2012.06.007]
17. Kao, C. & Hwang, S. N., (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in taiwan. European Journal of Operational Research, 185(1), 418-429. [DOI:10.1016/j.ejor.2006.11.041]
18. Kao, C., (2009). Efficiency decomposition in network DEA: A relational model. European Journal of Operational Research., 192(3): 949-962. [DOI:10.1016/j.ejor.2007.10.008]
19. Kitapci, H. & Celik, V., (2013). Ambidexterity and Firm Productivity Performance: The Mediating Effect of Organizational Learning Capacity, Procedia - Social and Behavioral Sciences, 99, 1105-1113. [DOI:10.1016/j.sbspro.2013.10.584]
20. Kuosmanen, T., Saastamoinen, A., & Sipiläinen, T., (2013). What is the best practice for benchmark regulation of electricity distribution? Comparison of DEA, SFA and StoNED methods, Energy Policy, 61, 740-750. [DOI:10.1016/j.enpol.2013.05.091]
21. Lee, K., Woo, H.G., & Joshi, K., (2017). Pro-innovation culture, ambidexterity and new product development performance: Polynomial regression and response surface analysis. European Management Journal, 35, pp 249-260. [DOI:10.1016/j.emj.2016.05.002]
22. Li, Y., Chen, Y., Liang, L. & Xie, J., (2012). DEA models for extended two-stage network structures. Omega, 40: 611-18. [DOI:10.1016/j.omega.2011.11.007]
23. March J. G., (1991). Exploration and exploitation in organizational learning. Organization science, 2(1), 71-87. [DOI:10.1287/orsc.2.1.71]
24. Mihalache, M. & Mihalache, O., (2016). Organizational ambidexterity and sustained performance in the tourism industry, Annals of Tourism Research, 101, 165-181. [DOI:10.1016/j.annals.2015.10.011]
25. Mullarkey, S., Caulfield, B., McCormack, S. & Basu, B., (2015). A framework for establishing the technical efficiency of electricity distribution counties (EDCs) using data envelopment analysis, Energy Conversion and Management, 94, 112-123. [DOI:10.1016/j.enconman.2015.01.049]
26. Munisamy, S., & Arabi, B. (2015). Eco-efficiency change in power plants: using a slacks-based measure for the meta-frontier Malmquist-Luenberger productivity index. Journal of cleaner production, 105, 218-232. [DOI:10.1016/j.jclepro.2014.12.081]
27. O'Reilly, Ch. A. & Tushman, M.L., (2013). Organizational Ambidexterity: Past, Present and Future. The Academy of Management Perspectives, 27 (4). pp. 324-338. [DOI:10.5465/amp.2013.0025]
28. Omrani, H., Gharizadeh Beiragh, R., & Shafiei Kaleibari, S., (2015). Performance assessment of Iranian electricity distribution companies by an integrated cooperative game data envelopment analysis principal component analysis approach, International Journal of Electrical Power & Energy Systems, 64, 617-625. [DOI:10.1016/j.ijepes.2014.07.045]
29. Seifert, S., Cullmann, A. & von Hirschhausen, Ch., (2016). Technical efficiency and CO2 reduction potentials - An analysis of the German electricity and heat generating sector, Energy Economics, 56, 9-19. [DOI:10.1016/j.eneco.2016.02.020]
30. Shahroodi, K., Khosravi, M.R, (2017). Comparison of the Efficiency of Power Transmission Companies in the Electric Power Industry of Iran Applying Conventional and Network Data Envelopment Analysis Methods. Iranian Journal of Optimization, 9 (2), 85-92.
31. Sueyoshi, T., & Goto, M., (2017). World trend in energy: an extension to DEA applied to energy and environment, Economic Structures, 6 (13): 1-23. [DOI:10.1186/s40008-017-0073-z]
32. Sueyoshi, T., Qu, J., Li, A. & Xie, Ch., (2020). Understanding the efficiency evolution for the Chinese provincial power industry: A new approach for combining data envelopment analysis-discriminant analysis with an efficiency shift across periods, Journal of Cleaner Production, 277, 1-11. [DOI:10.1016/j.jclepro.2020.122371]
33. Tavassoli M,. Faramarzi, G.R. & Farzipoor Saen, R., (2015). Ranking electricity distribution units using slacks-based measure, strong complementary slackness condition, and discriminant analysis. International Journal of Electrical Power & Energy Systems, 64:1214-1220. [DOI:10.1016/j.ijepes.2014.09.018]
34. Tone, K. & Tsutsui, M., (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197(1), 243-252. [DOI:10.1016/j.ejor.2008.05.027]
35. Van Assen, M. F., (2020). Empowering leadership and contextual ambidexterity- the mediating role of committed leadership for continuous improvement. European Management Journal. 38 (3), pp 435-449. [DOI:10.1016/j.emj.2019.12.002]
36. خسروی، م.ر و شاهرودی، ک. (1393). "كاربست مدل تحليل پوششي داده¬هاي شبكه¬اي در سنجش كارايي بخش انتقال نيروي صنعت برق ايران"، فصلنامه علمی- پژوهشی مدیریت صنعتی، 6 (2). صص 253-272.
37. صالح‌زاده، س.ج؛ حجازی، س. ر ارکان، ع و حسینی، س م، (1390). "ارائه روش تلفيقي اندازه‌گيري کارايي ساختارهاي شبکه‌اي شامل دور و لينک تخصيصي"، مدیریت تولید و عملیات، 1، صص60-47.
38. کنجکاو منفرد، ا. ر؛ خلیلیان، م .م و سعیدا اردکانی، س، (1398) "مدل ساختاری تاثیردوسوتوانی برند بر تعهد برند از طریق عملکرد؛ تصویر ذهنی و شهرت"، فصلنامه علمی - پژوهشی فرآیند مدیریت و توسعه، 32، 1، صص133-113.
39. مرادی، م؛ ابراهیم پور، م و ممبینی، ی، (1393). "تبیین دوسوتوانی سازمانی به عنوان مفهومی نوین در مدیریت سازمان¬های دانش بنیان"، فصلنامه رشد فناوری، 10، 40، صص 27-18.
40. ممبینی، ی؛ ابراهیم پور، م و مرادی، م، (1394). "بررسی ابهامات و نوع¬شناسی دوسوتوانی سازمانی در سازمان¬هاي تکنولوژي محور"، دوفصلنامه توسعه تکنولوژی صنعتی، 23، صص 71-59.
41. مومنی، م و شاه¬خواه، ن، (1390). "کاربرد مدل ارتباطی تحلیل پوششی داده های دومرحله ای در ارزیابی کارآیی". دانشور رفتار، (1-47)، صص 344-333.


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khosravi M R, Shahroodi K, Amirteimoori A, Delafrooz N. Presenting an integrated model of organizational ambidexterity and network data envelopment analysis in order to evaluate the efficiency of regional electricity companies in Iran. ieijqp. 2021; 10 (3) :62-74
URL: http://ieijqp.ir/article-1-816-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 3 (10-2021) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.04 seconds with 29 queries by YEKTAWEB 4343