[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 10, Issue 3 (10-2021) ::
ieijqp 2021, 10(3): 48-61 Back to browse issues page
Proposing Criteria for Selecting Wireless Telecommunication Technology of Advanced Metering Infrastructure in Iran’s Smart Grid
Mehri Mehrjoo * 1, Mohammad javad Tanakian1, Samira Noferesti1
1- Sistan and Baluchestan University
Abstract:   (740 Views)
Advanced Metering Infrastructure (AMI), as one of the components of smart power distribution networks, is used to send and receive the consumption, demand, voltage, and current between subscribers and electricity power distribution companies. To set up AMI, various wireless technologies have been used as the telecommunication network infrastructure in different countries. These technologies vary in terms of technical specifications, such as bit rate, frequency, latency, and coverage area. The selection of a technology among them requires a comprehensive study of specific technical requirements of the power distribution network, wireless technology development, and specific economic conditions of each country. From this viewpoint, we first review the research conducted on the design of smart grid telecommunications infrastructure. Then, we review the deployed wireless technologies based on their physical specifications and the way of access to the wireless medium. To differentiate their field of performance properly, we divide the technologies into three categories: short-range, medium-range, and long-range; in addition, we divide them into two groups: licensed and unlicensed operating frequency. Then, we examine the  topology and medium access mechanism of each technology in terms of its transmission delay and transmission capacity; from an executive point of view, we prioritize a set of qualitative criteria for selecting wireless telecommunication technology of AMI in Iran including having technology support in our country, being an open-source technology, having low network setup and maintenance cost, data transmission rate, interference, security and passive defense, ease of design and scalability, medium-access mechanism, and battery life. Then, we compare the wireless technologies, nominated for the telecommunication infrastructure of AMI, based on the proposed criteria. Finally, we suggest some of the most appropriate ones for the congested and geographically extended network of AMI.
Keywords: Wireless telecommunication technologies, Advanced Metering Infrastructure, Smart grid
Full-Text [PDF 646 kb]   (58 Downloads)    
Type of Study: Research |
Received: 2020/12/27 | Accepted: 2021/05/23 | Published: 2021/06/27
1. Akyol, B. A., Kirkham, H., Clements, S. L., Hadley, M. D., (2010). A survey of wireless communications for the electric power system, Pacific Northwest National Laboratory Richland, Washington. [DOI:10.2172/986700]
2. Aznaveh, F. Y., Bassiri, M. M., (2019). Evaluation of using LoRaWAN to implement AMI in big city of Tehran, In 3rd International Conference on Internet of Things and Applications (IoT), pp. 1-4. [DOI:10.1109/IICITA.2019.8808835]
3. Abbasi, M., Khorasanian, S., Yaghmaee, M. H., (2019). Low-power wide area network (lpwan) for smart grid: An in-depth study on lorawan, In 5th Conference on Knowledge Based Engineering and Innovation (KBEI), pp. 022-029. [DOI:10.1109/KBEI.2019.8735089]
4. Ayoub, W., Samhat, A., Nouvel, F., Mroue M., Prevotet, J., (2018). Internet of Mobile Things: Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs Standards and Supported Mobility, IEEE Communications Surveys Tutorials, 21(2), pp.1561 - 1581. In press, DOI 10.1109/COMST. 2018.2877382 [DOI:10.1109/COMST.2018.2877382]
5. Aalamifar, F., Lampe, L., (2018). Cost-efficient QoS-Aware Data Acquisition Point Placement for Advanced Metering Infrastructure, IEEE Transaction on Communications, 66(12), pp. 6260-6274, DOI 10.1109/TCOMM.2018.2858263. [DOI:10.1109/TCOMM.2018.2858263]
6. Ahmed, N., Rahman, H., Hussain, M. I., (2016). A comparison of 802.11ah and 802.15.4 for IoT, ICT Exp, 2(3), pp.100-102. [DOI:10.1016/j.icte.2016.07.003]
7. Ahmad, A. I., Ray, B., Chowdhury, M., (2019). Performance evaluation of lorawan for mission-critical iot networks, International Conference on future Network systems and security, speringer, Cham, pp. 37-51. [DOI:10.1007/978-3-030-34353-8_3]
8. Balachandran, K., Olsen, R. L., Pedersen, J. M., (2014). Bandwidth analysis of smart meter network infrastructure, In 16th International Conference on Advanced Communication Technology, pp. 928-933.‏ [DOI:10.1109/ICACT.2014.6779095]
9. Bembe, M., Abu-Mahfouz, A., Masonta, M., Ngqondi, T., (2019). A survey on low-power wide area networks for IoT applications, Telecommunication Systems, 71(2), pp. 249-274. DOI [DOI:10.1007/s11235-019-00557-9]
10. Dragičević, T., Siano, P., Prabaharan, S. R., (2019). Future generation 5G wireless networks for smart grid: A comprehensive review, Energies, 12(11). [DOI:10.3390/en12112140]
11. Deng, X., He, T., He, L., Gui, J., Peng, Q., (2017). Performance analysis for IEEE 802.11s wireless mesh network in smart grid, Wireless Personal Communications, 96(1), pp. 1537-1555. [DOI:10.1007/s11277-017-4255-7]
12. Ertürk, M. A., Aydın, M. A., Büyükakkaslar, M. T., Evirgen, H., (2019). A Survey on LoRaWAN Architecture, Protocol and Technologies, Future Internet, 11(10), DOI 10.3390/fi11100216. [DOI:10.3390/fi11100216]
13. Finnegan, J., Brown, S., (2018). A Comparative Survey of LPWA Networking, arXiv preprint arXiv: 1802.04222.
14. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., Hancke, G. P., (2011). Smart grid technologies: Communication technologies and standards, IEEE transactions on Industrial informatics, 7(4), pp. 529-539.‏ [DOI:10.1109/TII.2011.2166794]
15. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., Hancke, G. P., (2013). A survey on smart grid potential applications and communication requirements, IEEE Transactions on Industrial Informatics, 9(1), pp. 28-42. [DOI:10.1109/TII.2012.2218253]
16. Kuzlu, M., Pipattanasomporn, M., (2013). Assessment of communication technologies and network requirements for different smart grid applications, IEEE PES Innovative Smart Grid Technologies Conference (ISGT).pp. 1-6. [DOI:10.1109/ISGT.2013.6497873]
17. Kabalci, Y., Kabalci, E., Padmanaban, S., Holm-Nielsen, J. B., Blaabjerg, F., (2019). Internet of Things applications as energy internet in Smart Grids and Smart Environments, Electronics, 9(8), DOI 10.3390/electronics8090972. [DOI:10.3390/electronics8090972]
18. Korkmaz, T., Sarac, K., (2010). Characterizing link and path reliability in large-scale wireless sensor networks, in: Proceedings of 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, pp. 217-224. [DOI:10.1109/WIMOB.2010.5644996]
19. Li, ¬ Y., Cheng, X., Cao, Y., Wang, D., Yang, L., (2018). Smart Choice for the Smart Grid: Narrowband Internet of Things (NB-IoT), IEEE Internet of Things Journal, 5(3), pp. 1505 - 1515. [DOI:10.1109/JIOT.2017.2781251]
20. Mulla, A., Baviskar, S., Khare, N., Kazi, F., (2015). The Wireless Technologies for Smart Grid Communication: A Review, In Proceedings of the IEEE International Conference on Communication Systems and Network Technologies (CSNT), pp. 442-447. [DOI:10.1109/CSNT.2015.146]
21. Mroue, H., Nasser, A., Hamrioui, S., Parrein, B., Motta-Cruz, E., Rouyer, G., (2018). MAC layer-based evaluation of IoT technologies: LoRa, SigFox and NB-IoT, in Proc. IEEE Middle East and North Africa Commun. Conf (MENACOMM), pp. 1-5. [DOI:10.1109/MENACOMM.2018.8371016]
22. Nejad, H. M., Movahhedinia, N., Khayyambashi, M. R., (2017). Provisioning required reliability of wireless data communication in smart grid neighborhood area networks, The Journal of Supercomputing, 73(2), pp. 866-886. [DOI:10.1007/s11227-016-1873-x]
23. Orfanidis, C., Feeney, L. M., Jacobsson, M., Gunningberg, P., (2017). Investigating interference between LoRa and IEEE 802.15.4g networks, in Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 1-8. [DOI:10.1109/WiMOB.2017.8115772]
24. Rezagholizadeh, M., Mehrannia, P., Barzegar, A., Fereidunian, A., Moshiri, B., Lesani, H., (2013). A probabilistic partial order theory approach to IT infrastructure selection for Smart Grid, 13th International Conference on Control, Automation and Systems (ICCAS), pp. 488-493, DOI 10.1109/ICCAS.2013.6703983. [DOI:10.1109/ICCAS.2013.6703983]
25. Raza, U., Kulkarni, P., Sooriyabandara, M., (2017). Low Power Wide Area Networks: An Overview, IEEE Communications Surveys & Tutorials, 19(2), pp. 855-873. [DOI:10.1109/COMST.2017.2652320]
26. Rama¬, Y., Ozpmar, M. A., (2018). A Comparison of Long-Range Licensed and Unlicensed LPWAN Technologies According to Their Geolocation Services and Commercial Opportunities, 18th Mediterranean Microwave Symposium (MMS), pp. 398-403. [DOI:10.1109/MMS.2018.8612009]
27. Saputro, ¬N., Akkaya, K., (2017). Investigation of Smart Meter Data Reporting Strategies for Optimized Performance in Smart Grid AMI Networks, IEEE Internet of Things Journal, 4(4), pp. 894-904. [DOI:10.1109/JIOT.2017.2701205]
28. Shah, K., Notor, J., Godfrey, T., Rolfe, B., Seok, Y., Baycas, T., Khatibi, F., (2018). Smart Grid Standards for Operation in Sub-1 GHz Bands, an IEEE White Paper.‏
29. Tiurlikova, A., Stepanov, N., Mikhaylov, K., (2018). Method of assigning spreading factor to improve the scalability of the LoRaWAN wide area network, in 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 1-4.‏ [DOI:10.1109/ICUMT.2018.8631273]
30. U. S. DOE, (2010). Communications requirements of Smart Grid technologies, Tech. Rep., US Department of Energy, https://www.energy.gov/gc/downloads/communications-requirements-smart-grid-technologies. /. Accessed May 7, 2021.
31. Zamani, M.A., Fereidunian, A., Jamalabadi, H. R., Boroomand, F., Sepehri, P., Lesani, H., Lucas, C., (2010). Smart grid IT infrastructure selection: A T3SD Fuzzy DEA approach, IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), pp. 1-7, DOI 10.1109/ISGTEUROPE.2010.5638955. [DOI:10.1109/ISGTEUROPE.2010.5638955]
32. حسینی سنو، سید امین؛ شهریاری، شیرزاد، (1394). مرجع کامل شبکه های بیسیم و سیار (اصول پروتکل ها، معماری، شبیه سازها)، ویرایش اول، دانشگاه فردوسی مشهد، انتشارات جهاد دانشگاهی.
33. رحمانی، معصومه؛ (1394). مطالعه و بررسی چالش¬ها و نیازمندی¬های مخابراتی زیرسیستم¬های شبکه هوشمند¬، سی امین کنفرانس بین المللی برق.
34. شریف پور، زهرا؛ علی بخشی، مهدیه، مظفری، مهدیه، (1396). طراحی زیرساخت مخابراتی شبکه هوشمند در پایلوت نمونه، سی و دومین کنفرانس بین المللی برق ایران.
35. عزیزی، سعدون؛ کسری رشیدی، (1397). بررسی و مقایسه جامع فناوری¬های بیسیم برای اینترنت اشیاء، علوم رایانشی، 11.
36. مدقق، هادی؛ (1394). هوشمند سازی شبکه برق، سمینار شبکه با گرایش شبکه هوشمند و سیستم های نوین SCADA.
37. مدقق، هادی؛ رضاییان، میثم، سالک گیلانی، نادر،(1392).تکنولوژی¬های مخابراتی در سیستم¬های اندازه¬گیری هوشمند و طرح فهام، کنفرانس شبکه های هوشمند.
38. نغزعلی، مظهره؛ (پاییز 1398). پیاده سازی اینترنت اشیاء با استاندارد 802.11ah، پایان نامه کارشناسی ارشد در مهندسی برق (مخابرات سیستم)¬، دانشگاه سیستان و بلوچستان، دانشکده برق و کامپیوتر.
39. یغمایی مقدم، محمد حسین؛ (1392). ¬الزامات و نیازمندی¬های ارتباطی شبکه هوشمند برق¬، فصل نامه عصر برق، (2)1، صص 24-22.

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehrjoo M, Tanakian M J, Noferesti S. Proposing Criteria for Selecting Wireless Telecommunication Technology of Advanced Metering Infrastructure in Iran’s Smart Grid. ieijqp. 2021; 10 (3) :48-61
URL: http://ieijqp.ir/article-1-804-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 3 (10-2021) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 29 queries by YEKTAWEB 4343