:: Volume 10, Issue 3 (10-2021) ::
ieijqp 2021, 10(3): 14-25 Back to browse issues page
The control of centrifugal compressor surge using a recycle valve
Adel Khosravi1 , Abbas Chatraei * 1, Gazanfar Shahgholian1 , Sayed Mohammad Kargar1
1- Islamic Azad University, Najafabad branch
Abstract:   (2839 Views)
A compressor is a machine that is used to increase the pressure of various gases. How to increase the pressure depends on the compressor type. One of the functional problems of centrifugal compressors is the phenomenon of the surge, which is still an obscure and unknown phenomenon that can induce mechanical or thermal stress in the system and cause a lot of damage. This type of aerodynamic instability reduces the compression ratio at both ends of the compressor, thereby reducing the overall efficiency of the system. In general, when a surge occurs, it causes process turbulence, the degradation of overall compressor efficiency, the reduction of compressor life due to mechanical damage to seals, bearings, rotor, and impellers, and the loss of internal freedoms and sensitive mechanical parts of the system. Therefore, surge control is one of the challenges of compressor control and expands the operating range of compressor operation. A map compressor consists of two axes, horizontal and vertical, as well as a set of curves that show the horizontal axis of the flow (capacity) and the vertical axis, head or pressure. Compressors must change their speed to change the output flow. For each speed, there is a minimum point and a maximum flow point within which the compressor operation is stable and predictable. The maximum capacity point is called the stone wall point and the minimum capacity point is called the vertex point. The surge line (SL) of a compressor is formed by connecting the surge points at different speeds. If the compressor works on the right side of the surge line, it is in a steady state, but if it works on the left side of the surge line, it is in an unstable or surge state. Using methods based on active surge control, the instabilities leading to the surge can be eliminated, and the area of stable performance of the system can be extended to the surge line, and thereby the stable area of the system can be widened. This paper uses a dynamic model of centrifugal compressors with a recycle valve, as well as a proportional-integrator-derivative (PID) controller and a sliding mode controller, to control the surge phenomenon with a compressor control approach based on the surge control line. A new sliding surface is defined for controlling sliding mode, and it is controlled by using recycle valve and a compressor inlet valve. A quadratic Lyapunov function is used to ensure the stability of the intended slip surface. The two approaches of inlet and recycle valve are expressed individually and collectively. The results of simulation in MATLAB state that among the compressor with a PID controller and the compressor with sliding mode, the latter outperforms the former in controlling the compressor at different speeds. Based on the comparison of the results, the amplitude of the control signal in the sliding mode is less than PID and the system reaches a stable state with less energy consumption, which shows better control by the sliding mode than by PID
Keywords: surge phenomenon, sliding mode control, compressor, Recycle valve, Proportional–integral–derivative controller
Full-Text [PDF 2112 kb]   (1452 Downloads)    
Type of Study: Research |
Received: 2020/11/22 | Accepted: 2021/06/16 | Published: 2021/06/27
References
1. Bell, I. H., Groll, E. A., Braun, J. E., Horton, W. T. (2013). A computationally efficient hybrid leakage model for positive displacement compr¬es¬sors and expa¬nd¬ers, International Journal of Refrigeration, Vol. 36, No. 7, pp. 1965-1973, Nov. 2013. [DOI:10.1016/j.ijrefrig.2013.01.005]
2. Bartolini, G., Muntoni, A., Pisano, A., Usai, E. (2008). Compressor surge suppression by second-order sliding mode control technique, IFAC Proceedings Volumes, Vol. 41, No. 2, pp. 6238-6244. [DOI:10.3182/20080706-5-KR-1001.01053]
3. Cortinovis, A., Pareschi, D., Mercangoez, M., Besselmann, T. (2012). Model predictive anti-surge control of centrifugal compressors with variable-speed drives, IFAC Proceedings Volumes, vol.45, pp. 251-256. [DOI:10.3182/20120531-2-NO-4020.00052]
4. Chetate, B., Zamoum, R., Fegriche, A., Boumdin, M. (2013). PID and novel approach of PI fuzzy logic controllers for active surge in centrifugal comp¬ressor, Arabian Journal for Science and Engineering, Vol. 38, No. 6, pp 1405-1414. [DOI:10.1007/s13369-013-0601-6]
5. Chen, S., Wei, Z., Sun, G., Cheung, K. W., Wang, D. (2017), Identifying optimal energy flow solvability in electricity-gas integrated energy systems, IEEE Trans. on Sustainable Energy, vol. 8, no. 2, pp. 846-854. [DOI:10.1109/TSTE.2016.2623631]
6. Cheng, S. (2019). Nonlinear dynamic analysis of recip¬ro¬ca¬ting compressor considering different clearance, Proceeding of the IEEE/EITCE, pp. 532-535, Xia¬me¬n, China. [DOI:10.1109/EITCE47263.2019.9094823]
7. Fujisawa, N., Inui, T., Ota, Y. (2019). Evolution process of diffuser stall in a centrifugal compressor with van¬n¬e¬d diffuser, Journal of Turbomachinery, Vol. 141, No. 4, pp. 1-10. [DOI:10.1115/1.4042249]
8. Gravdahl, J. T. and Egeland, O. (1999). Centrifugal comp¬res¬sor surge and speed control, in IEEE Transactions on Control Systems Technology, vol. 7, no. 5, pp. 567-579. [DOI:10.1109/87.784420]
9. Ghanavati, M., Salahshoor,K., Motlagh, M. R. J., Ramazani, A., Moarefianpour, A. (2018). A novel combined approach for gas compressors surge suppression based on robust adaptive control and backstepping, Journal of Mechanical Science and Technology. [DOI:10.1007/s12206-018-0133-1]
10. Haddad, W. M., Leonessa, A., Chellaboina, V., Fausz, J. L. (1999). Nonlinear robust disturbance rejection controllers for rotating stall and surge in axial flow compressors, IEEE Trans. on Control Systems Technology, vol. 7, no. 3, pp. 391-398. [DOI:10.1109/87.761059]
11. Hua, Z., Zhao, D., Dou, M., Yan, L., Zhang, H. (2017). Modeling and control of brushless DC motor for compressor driving, Proceeding of the IEEE/ECCE, Cincinnati, OH, USA, pp. 1-5. [DOI:10.1109/ECCE.2017.8096925]
12. Järvisalo, M., Ahonen, T., Ahola, J., Kosonen, A., Niemelä, M. (2016). Soft-sensor-based flow rate and specific energy estimation of industrial variable-speed-driven twin rotary screw compressor, IEEE Trans. on Industrial Electronics, vol. 63, no. 5, pp. 3282-3289. [DOI:10.1109/TIE.2016.2527621]
13. Johansen, T., Bøhagen, B., Spjøtvold, J. (2009). Anti-surge controlControl theoretic analysis of existing anti-surge control strategies, NTNU.
14. Mozafarpoor-Khoshrodi, S.H., Shahgholian, G. (2016). Im¬p¬rov¬ement of perturb and observe method for maximum power point tracking in wind energy conversion system using fuzzy controller, Energy Equipment and Systems, vol. 4, no. 2, pp. 111-122.
15. Ma, X., Zheng, S., Wang, K. (2019). Active surge control for magnetically suspended centrifugal compressors using a variable equilibrium point approach, IEEE Trans. on Industrial Electronics, vol. 66, no. 12, pp. 9383-9393. [DOI:10.1109/TIE.2019.2891412]
16. Nehler, T. (2018). Linking energy efficiency measures in industrial compressed air systems with non-energy benefits- A review, Renewable and Sustainable Energy Reviews, Vol. 89, pp. 72-87. [DOI:10.1016/j.rser.2018.02.018]
17. Shahgholian, G. (2020). An overview of hydroelectric power plant: Operation, modeling, and control, Journal of Renewable Energy and Environm-ent, vol. 7, no. 3, pp. 14-28.
18. Oucheriah, S. and Guo, L. (2019). PWM-based adaptive sliding-mode control for boost DC-DC converters, IEEE Trans. on Industrial Electronics, vol. 60, no. 8, pp. 3291-3294. [DOI:10.1109/TIE.2012.2203769]
19. Torrisi, G., Grammatico, S., Cortinovis, A., Mercangöz, M., Morari, M., Smith, R. S. (2017). Model predictive approaches for active surge control in centrifugal compressors, IEEE Trans. on Control Systems Technology, pp. 1947-1960. [DOI:10.1109/TCST.2016.2636027]
20. Woo, S., Pecht, M., O'Neal, D. L. (2020). Reliability design and case study of the domestic compressor subjec¬ted to repetitive internal stresses, Reliability Engi¬ne¬ering and System safety, Vol. 193. [DOI:10.1016/j.ress.2019.106604]
21. White, A. J. and Meacock, A. J. (2004). An evaluation of the effects of Water Injection on compressor performance, Transactions of the ASME, pp. 748-754, 2004. [DOI:10.1115/1.1765125]
22. Xu, W., Wang, Q., Li, X., Liu, Y., Zhu, J. (2020). A novel resonant frequency tracking control for linear compressor based on MRAS method, CES Trans. on Electrical Machines and Systems, vol. 4, no. 3, pp. 227-236. [DOI:10.30941/CESTEMS.2020.00028]
23. Yoon, S. Y., Lin, Z., Allaire, P. E. (2014). Experimental evaluation of a surge controller for an AMB supported compressor in the presence of piping acoustics, IEEE Trans. on Control Systems Technology, vol. 22, no. 3, pp. 1215-1223. [DOI:10.1109/TCST.2013.2274729]
24. Yoon, J. W., Wilailak, Bae, S., J. E., Lee, C. J., Kim, I. W. (2020). Surge analysis in a centrifugal compressor using a dimensionless surge number, Chemical Engineering Research and Design, vol. 164, pp. 240-247. [DOI:10.1016/j.cherd.2020.10.004]
25. Yin, X. X., Lin, Y. G., Li, W., Gu, Y. J., Liu, H. W., Lei, P. F. (2015). A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics, Energy, vol. 85, pp. 677-686. [DOI:10.1016/j.energy.2015.04.005]
26. Zhang, Y., Zheng, S., Chen,, G., Fang, J. (2018). Surge dete¬c¬tion approach for magnetically suspended centr¬if¬u¬g¬al compressors using adaptive frequency esti¬ma¬t¬o¬r, IEEE Trans. on Industrial Electronics, Vol. 65, No. 7, pp. 5733-5742. [DOI:10.1109/TIE.2017.2774728]
27. D. Zhao, B. Blunier, F. Gao, M. Dou, A. Miraoui, "Control of an ultrahigh-speed centrifugal compressor for the air management of fuel cell systems", IEEE Trans. on Industry Applications, Vol. 50, No. 3, pp. 2225-2234, May/June 2014. [DOI:10.1109/TIA.2013.2282838]
28. Zhao, D., Blunier, B., Gao, F., Dou, M., Miraoui, A. (2014), Control of an ultrahigh-speed centrifugal compressor for the air management of fuel cell systems, IEEE Trans. on Industry Applications, Vol. 50, No. 3, pp. 2225-2234. [DOI:10.1109/TIA.2013.2282838]
29. خسروی ع.، چترایی ع.، شاهقلیان غ.، کارگر م. (1399) مدل‌سازی کمپرسور 250-K با استفاده از روش سری موازی نارکس و فازی سلسله ‌مراتبی، نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال 18، شماره 3، ص.: 191-198.
30. شهسواری، م.، میرطلائی م. م. (1400). طراحی و پیاده سازی یک مبدل غیر ایزوله چند درگاهه با بهره ولتاژ بالا"، نشریه روش¬های هوشمند در صنعت برق، ش.: 46، ص.: 33-48.
31. محمدی پ.، جدی م.، شیخ¬الاسلام ف.، غیور م. (1391). بهبود محدوده عملکرد کمپرسورهای گریز از مرکز گازی با تغییر خط کنترل سرج با استفاده از کنترل فعال برمبنای منطق فازی"، نشریه روش¬های هوشمند در صنعت برق، سال: 3، ش.: 9، ص.: 51-56.
32. مهدویان، م.، بهزادفر، ن. (1398). مروری بر سیستم تبدیل انرژی بادی و کاربرد انواع ژنراتور القایی"، نشریه تحقیقات نوین در برق، سال: 8، ش.: 1، ص.: 55-66.


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 3 (10-2021) Back to browse issues page