[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 10, Issue 1 (4-2021) ::
ieijqp 2021, 10(1): 80-88 Back to browse issues page
Optimization and Investment of Energy Storage System Implementation and Demand Response Pattern for Microgrid Cost Reduction with Approach of Bee Colony Algorithm
Sahbasadat Rajamand Dr.
kermanshah branch, islamic azad university
Abstract:   (104 Views)
Microgrid has a precious role in new power systems. Load balancing, voltage stability and load supporting in peak times are some great issues of microgrid. Besides these advantages, some challenges such as cost of microgrid must be considered. Energy storage system (ESS) and Demand response (DR) program can improve the performance of the microgrid in terms of more voltage stability and cost reduction. In this paper using the renewable distributed generators, ESS and DR program, the cost function is defined where cost minimization of microgrid is performed based on the evolutionary algorithm, bee colony optimization (BCO). It is worth mentioning that battery wear and maintenance cost is also considered in the cost function. Simulation results show that considering the optimized location and capacity of ESS and efficient DR program, the overall cost is noticeably reduced and the microgrid performance is greatly improved.
Keywords: Energy storage system, Battery wear, bee colony optimization algorithm, microgrid, cost function.
Full-Text [PDF 1077 kb]   (27 Downloads)    
Type of Study: Research |
Received: 2020/10/30 | Accepted: 2021/03/8 | Published: 2021/04/6
References
1. [1] Wang, Y.; Huang, Y.; Wang, Y.; Yu, H.; Li, R.; Song, S. Energy Management for Smart Multi-Energy Complementary Micro-Grid in the Presence of Demand Response. Energies 2018, 11, 974. [DOI:10.3390/en11040974]
2. [2] Nojavan, Sayyad, Majidi, Majid, Esfetanaj, Naser Nourani, "An efficient cost-reliability optimization model for optimal siting and sizing of energy storage system in a microgrid in the presence of responsible load management," Energy, Vol. 139, pp. 89-97, 2017. [DOI:10.1016/j.energy.2017.07.148]
3. [3] H. Ardeshiri, S. M. Barakati and K. Ranjbar, "Using improved time of use demand response in optimal operation of microgrid," 20th Conference on Electrical Power Distribution Networks Conference (EPDC), Zahedan, 2015, pp. 117-122. [DOI:10.1109/EPDC.2015.7330483]
4. [4] JING, Zhaoxia, ZHU, Jisong, HU, Rongxing, 2018, "Sizing optimization for island microgrid with pumped storage system considering demand response", Journal of Modern Power Systems and Clean Energy, 791 - 801, vol. 6, IS - 4. [DOI:10.1007/s40565-017-0349-1]
5. [5] Fady Y. Melhem. "Optimization methods and energy management in smart grids", Electric power. Université Bourgogne Franche-Comté, 2018. English. NNT: 2018UBFCA014.
6. [6] M. R. Djalal, M. Yunus, A. Imran, H. Setiadi, "Capacitive energy storage (CES) optimization for load frequency control in micro hydro power plant using imperialist competitive algorithm (ICA)," Int J Eng Technol, vol. 5, no. 2, pp. 279-297, 2018. [DOI:10.24003/emitter.v5i2.195]
7. [7] M. Saffari, A. de Gracia, C. Fernandez, M. Belusko, D. Boer, L. F. Cabeza, "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Appl Energy, vol. 211, pp. 604-616, 2018. [DOI:10.1016/j.apenergy.2017.11.063]
8. [8] J. Hu, M. Sarker, J. Wang, F. Wen, W. Liu, "Provision of flexible ramping product by battery energy storage in day-ahead energy and reserve markets," IET Gen Trans Dist., vol. 12 , Iss. 10, pp. 2256 - 2264, 2018. [DOI:10.1049/iet-gtd.2017.1522]
9. [9] M. Faisal, M. A. Hannan, P. J. Ker, A. Hussain, M. B. Mansor and F. Blaabjerg, "Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges," in IEEE Access, vol. 6, pp. 35143-35164, 2018. [DOI:10.1109/ACCESS.2018.2841407]
10. [10] M. Brenna, F. Foiadelli, M. Longo and D. Zaninelli, "Energy Storage Control for Dispatching Photovoltaic Power," in IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2419-2428, 2018. [DOI:10.1109/TSG.2016.2611999]
11. [11] Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles. Energies 2018, 11, 1820. [DOI:10.3390/en11071820]
12. [12] Sufyan M, Abd Rahim N, Tan C, Muhammad MA, Sheikh Raihan SR (2019) Optimal sizing and energy scheduling of isolated microgrid considering the battery lifetime degradation. PLoS ONE 14(2): e0211642. [DOI:10.1371/journal.pone.0211642]
13. [13] H. Bludszuweit and J. A. Dominguez-Navarro, "A probabilistic method for energy storage sizing based on wind power forecast uncertainty," IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1651-1658, 2011. [DOI:10.1109/TPWRS.2010.2089541]
14. [14] Y. M. Atwa and E. F. El-Saadany, "Optimal allocation of ESS in distribution systems with a high penetration of wind energy," IEEE Trans. Power Syst., vol. 25, no. 4, 2010. [DOI:10.1109/TPWRS.2010.2045663]
15. [15] A. S. A. Awad, T. H. M. El-Fouly, and M. M. A. Salama, "Optimal ESS allocation and load shedding for improving distribution system reliability," IEEE Trans. Smart Grid, vol. 5, Iss. 5, pp. 2339 - 2349, 2014. [DOI:10.1109/TSG.2014.2316197]
16. [16] A. S. A. Awad, T. H. M. EL-Fouly and M. M. A. Salama, "Optimal ESS Allocation for Load Management Application," IEEE Trans. on Power Systems, vol. 30, no. 1, pp. 327-336, 2015. [DOI:10.1109/TPWRS.2014.2326044]
17. [17] El-Bidairi, Kutaiba S., Nguyen, Hung Duc, Mahmoud, Thair S., Jayasinghe, S.D.G., Guerrero, Josep M. "Optimal sizing of Battery Energy Storage Systems for dynamic frequency control in an islanded microgrid: A case study of Flinders Island, Australia," Energy, vol. 195, SP. 117059, 2020. [DOI:10.1016/j.energy.2020.117059]
18. [18] M. Sedighizadeh, M. Esmaili, S. M. Mousavi-Taghiabadi, "Optimal joint energy and reserve scheduling considering frequency dynamics, compressed air energy storage, and wind turbines in an electrical power system", Journal of Energy Storage, vol. 23, pp. 220-233, 2019. [DOI:10.1016/j.est.2019.03.019]
19. [19] C. Abbey and G. Joos, "A stochastic optimization approach to rating of energy storage systems in wind-diesel isolated grids," IEEE Trans. Power Syst., vol. 24, no. 1, pp. 418-426, 2009. [DOI:10.1109/TPWRS.2008.2004840]
20. [20] S. X. Chen, H. B. Gooi, and M. Q. Wang, "Sizing of energy storage for microgrids," IEEE Trans. Smart Grid, vol. 3, no. 1, 2012. [DOI:10.1109/TSG.2011.2160745]
21. [21] W. Yu, D. Liu, Y. Huang, "Operation Optimization Based on the Power Supply and Storage Capacity of an Active Distribution Network", Energies, vol. 6, pp. 6423-6438, 2013. [DOI:10.3390/en6126423]
22. [22] W. Shi, X. Xie, C. Chu, R. Gadh, "Distributed optimal energy management in microgrids," IEEE Trans. Smart Grid, vol. 6, pp. 1137-1146, 2015. [DOI:10.1109/TSG.2014.2373150]
23. [23] Angenendt, Georg, Zurmühlen, Sebastian, Figgener, Jan, Kairies, Kai-Philipp, Sauer, Dirk Uwe, "Providing frequency control reserve with photovoltaic battery energy storage systems and power-to-heat coupling," Energy, vol. 194, 116923, 2020. [DOI:10.1016/j.energy.2020.116923]
24. [24] R. Hemmati, S. M. S. Ghiasi, A. Entezariharsini, "Power fluctuation smoothing and loss reduction in grid integrated with thermal-wind-solar-storage units", Energy, vol. 152, no. 1, pp. 759-769, 2018. [DOI:10.1016/j.energy.2018.04.004]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rajamand S. Optimization and Investment of Energy Storage System Implementation and Demand Response Pattern for Microgrid Cost Reduction with Approach of Bee Colony Algorithm. ieijqp. 2021; 10 (1) :80-88
URL: http://ieijqp.ir/article-1-783-en.html


Volume 10, Issue 1 (4-2021) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.04 seconds with 29 queries by YEKTAWEB 4299