[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 8, Issue 2 (12-2019) ::
ieijqp 2019, 8(2): 28-39 Back to browse issues page
Comparison of the Eccentricity Faults Effects on the Performance of several Toroidal Wounded Axial Flux Permanent Magnet Motors
Mohammad Rajabi-Sebdani1 , Ahmad Darabi * 1, Jawad Faiz2
1- Shahrood University of Technology
2- Tehran University
Abstract:   (2941 Views)
Eccentricity fault is one the most common fault types of disk-type permanent magnet machines, which could lead to devastating effects. Unfortunately, most of the previous works have studied this fault and its detection techniques for slotted structure with common winding. Therefore, in this paper, the effects of eccentricity faults on the performance of single-sided slotted, single-sided slotless, double-sided slotted, and double-sided slotless structures, all of which are toroidal wounded, are studied. For this purpose, for each of these structures, full load and absolute no-load conditions at three healthy, dynamic eccentricity, and static eccentricity states have been modeled by using 3D finite element transient analysis. Various performance characteristics, i.e. total input current, current in parallel paths, coils circulating current, total flux linkage, flux linkage of each coil, torque, and axial force on rotor, have been extracted.  The eccentricity faults effects on the performance of these motors have been studied through the analysis and comparison of these characteristics. According to the obtained results, using slotless stator and double-sided structure would lead to great reduction of the undesired effects of these faults. Moreover, it will be shown that conventional detection techniques of eccentricity faults may not be effective for some structures.
Keywords: fault detection, eccentricity fault, finite element method, toroidal winding, axial flux permanent magnet machine, transient modeling.
Full-Text [PDF 3742 kb]   (643 Downloads)    
Type of Study: Research |
Received: 2019/06/19 | Accepted: 2019/09/29 | Published: 2019/11/27
References
1. [1] S. Paul, M. Farshadnia, A. Pouramin, J. Fletcher, and J. Chang, "Comparative analysis of wave winding topologies and performance characteristics in ultra-thin printed circuit board axial-flux permanent magnet machine," IET Electr. Power Appl., vol. 13, no. 5, pp. 694-701, 2019. [DOI:10.1049/iet-epa.2018.5417]
2. [2] X. Zhu, W. Wu, L. Quan, Z. Xiang, and W. Gu, "Design and Multi-Objective Stratified Optimization of a Less-rare-earth Hybrid Permanent Magnets Motor with High Torque Density and Low Cost," IEEE Trans. Energy Convers., vol. PP, no. c, p. 1, 2018. [DOI:10.1109/TEC.2018.2886316]
3. [3] Z. Zhang, W. Geng, Y. Liu, and C. Wang, "Feasibility of a New Ironless-stator Axial Flux Permanent Magnet Machine for Aircraft Electric Propulsion Application," China Electrotech. Soc. Trans. Electr. Mach. Syst., vol. 3, no. 1, pp. 30-39, 2019. [DOI:10.30941/CESTEMS.2019.00005]
4. [4] A. Daghigh, H. Javadi, and H. Torkaman, "Design optimization of direct-coupled ironless axial flux permanent magnet synchronous wind generator with low cost and high annual energy yield," IEEE Trans. Magn., vol. 52, no. 9, pp. 1-10, 2016. [DOI:10.1109/TMAG.2016.2560143]
5. [5] J. Gieras, "Permanent Magnet Motor Technology Design and Applications," Taylor Fr. Group,LLC, p. 600, 2010. [DOI:10.1201/9781420064414]
6. [6] J. F. Gieras, R.-J. Wang, and M. J. Kamper, "Axial Flux Permanent Magnet Brushless Machines," Springer Publ., pp. 1-364, 2008. [DOI:10.1007/978-1-4020-8227-6]
7. [7] H. Vansompel, P. Sergeant, L. Dupr, and A. Van Den Bossche, "Axial Flux PM Machines with a Variable Airgap," IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 730-737, Feb. 2014. [DOI:10.1109/TIE.2013.2253068]
8. [8] Y. Chen, P. Pillay, and A. Khan, "PM wind generator topologies," Ind. Appl. IEEE, vol. 41, no. 6, pp. 1619-1626, 2005. [DOI:10.1109/TIA.2005.858261]
9. [9] B. M. Ebrahimi, J. Faiz, and M. J. Roshtkhari, "Static-, dynamic-, and mixed-eccentricity fault diagnoses in permanent-magnet synchronous motors," IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4727-4739, 2009. [DOI:10.1109/TIE.2009.2029577]
10. [10] S. M. Mirimani, A. Vahedi, F. Marignetti, and E. De Santis, "Static Eccentricity Fault Detection in Single Stator-Single Rotor Axial Flux Permanent Magnet Machines," IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 1838-1845, 2012. [DOI:10.1109/TIA.2012.2221673]
11. [11] B. M. Ebrahimi and J. Faiz, "Diagnosis and performance analysis of three-phase permanent magnet synchronous motors with static, dynamic and mixed eccentricity," IET Electr. Power Appl., vol. 4, no. 1, pp. 53-65, 2010. [DOI:10.1049/iet-epa.2008.0308]
12. [12] S. M. Mirimani, A. Vahedi, and F. Marignetti, "Effect of Inclined Static Eccentricity Fault in Single Stator-Single Rotor Axial Flux Permanent Magnet Machines," IEEE Trans. Magn., vol. 48, no. 1, pp. 143-149, 2011. [DOI:10.1109/TMAG.2011.2161876]
13. [13] E. Ajily, M. Ardebili, and K. Abbaszadeh, "Magnet Defect and Rotor Eccentricity Modeling in Axial-Flux Permanent-Magnet Machines via 3-D Field Reconstruction Method," IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 486-495, 2016. [DOI:10.1109/TEC.2015.2506819]
14. [14] A. Di Gerlando, G. M. Foglia, M. F. Iacchetti, and R. Perini, "Evaluation of manufacturing dissymmetry effects in axial flux permanent-magnet machines: Analysis method based on field functions," IEEE Trans. Magn., vol. 48, no. 6, pp. 1995-2008, 2012. [DOI:10.1109/TMAG.2011.2180919]
15. [15] J. De Bisschop, P. Sergeant, A. Hemeida, H. Vansompel, and L. Dupré, "Analytical Model for Combined Study of Magnet Demagnetization and Eccentricity Defects in Axial Flux Permanent Magnet Synchronous Machines," IEEE Trans. Magn., vol. 53, no. 9, pp. 1-12, 2017. [DOI:10.1109/TMAG.2017.2709267]
16. [16] Z. Shabahang, M. Shahnazari, and A. Sedighi, "Analysis of dynamic eccentricity in a coreless axial flux permanent magnet machine," 30th Power Syst. Conf. PSC 2015, no. November, pp. 358-362, 2017. [DOI:10.1109/IPSC.2015.7827773]
17. [17] S. M. Mirimani, A. Vahedi, F. Marignetti, and roberto Di Stefano, "An Online Method for Static Eccentricity Fault Detection in Axial Flux Machines," IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1931-1942, 2015. [DOI:10.1109/TIE.2014.2360070]
18. [18] O. O. Ogidi, P. S. Barendse, and M. A. Khan, "Detection of static eccentricities in axial-flux permanent-magnet machines with concentrated windings using vibration analysis," IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4425-4434, 2015. [DOI:10.1109/TIA.2015.2448672]
19. [19] O. O. Ogidi, P. S. Barendse, and M. A. Khan, "Fault diagnosis and condition monitoring of axial-flux permanent magnet wind generators," Electr. Power Syst. Res., vol. 136, pp. 1-7, 2016. [DOI:10.1016/j.epsr.2016.01.018]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rajabi-Sebdani M, Darabi A, Faiz J. Comparison of the Eccentricity Faults Effects on the Performance of several Toroidal Wounded Axial Flux Permanent Magnet Motors. ieijqp 2019; 8 (2) :28-39
URL: http://ieijqp.ir/article-1-641-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (12-2019) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.07 seconds with 40 queries by YEKTAWEB 4645