[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 11، شماره 1 - ( 1-1401 ) ::
جلد 11 شماره 1 صفحات 56-44 برگشت به فهرست نسخه ها
تشخیص خطا و ارزیابی وضعیت ترانسفورماتورهای قدرت با استفاده از روش‌های کاربردی پردازش سیگنال
مرتضی سعید1، حامد زین الدینی میمند*1، داود ابوترابی زارچی2
1- دانشکده مهندسی برق و کامپیوتر- دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته- کرمان- ایران
2- دانشکده مهندسی برق- دانشگاه یزد- یزد- ایران
چکیده:   (1742 مشاهده)

تشخیص نوع خطا در ترانسفورماتورهای قدرت اهمیت زیادی دارد، زیرا ترانسفورماتورها تحت تأثیر تنش­های الکتریکی مانند موج سیار، کلیدزنی­ها، و همچنین تنش­های حرارتی مانند اضافه بار و واکنش­های شیمیایی در روغن دی­الکتریک هستند. ارزیابی شرایط و جلوگیری از گسترش خطا در ترانسفورماتور باعث افزایش طول عمر ترانسفورماتور، کاهش هزینه­ها و تداوم بهره­برداری در نیروگاه­ها و پست­های انتقال می­شود. در این مقاله فرض بر این است که دو گازCO  وCO2  محلول در روغن ترانسفورماتور توسط سنسور TM8 به صورت آنلاین اندازه­گیری شده و با استناد به استاندارد CIGRE 761-2019 جهت تشخیص خطا، هفت روش 1- تبدیل فوریه گسسته، 2- تبدیل موجک گسسته، 3- تبدیل هیلبرت، 4- تبدیل گابور، 5- ترکیب تبدیل موجک گسسته و تبدیل گابور، 6- اسپکتروگرام، 7- ترکیب تبدیل موجک گسسته و تبدیل هیلبرت، بصورت پیوسته بر روی این دو گاز محلول در روغن ترانسفورماتور اعمال می­شود تا مشخص شود که در یک زمان یا یک فرکانس مشخص کدام یک از گازهای محلول در روغن ترانسفورماتور تغییر می­کنند و همبستگی زمانی تغییر گازهای محلول در روغن ترانسفورماتور چگونه است، تا بتوان خطاهای تعیین شده توسط استاندارد CIGRE 761-2019 را تشخیص داد.

واژه‌های کلیدی: ترانسفورماتور قدرت، تشخیص خطا، تبدیل موجک گسسته، تبدیل هیلبرت، تبدیل فوریه سریع، تبدیل گابور، اسپکتروگرام
متن کامل [PDF 1694 kb]   (339 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1400/6/12 | پذیرش: 1400/9/14 | انتشار: 1401/2/6
فهرست منابع
1. CIGRE A2.49, (2019). Condition Assessment of Power Transformers, Technical Brochure CIGRE, No. 761.
2. Khan, S.A., Equbal, M.D., Islam, T., (2015). A comprehensive comparative study of DGA based transformer fault diagnosis using fuzzy logic and ANFIS models, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 1, pp. 590-596. [DOI:10.1109/TDEI.2014.004478]
3. Hooshmand, R.A., Parastegari, M., Forghani, Z., (2012). Adaptive neuro-fuzzy inference system approach for simultaneous diagnosis of the type and location of faults in power transformers, IEEE Electrical Insulation Magazine, Vol. 28, No. 5, pp. 32-42. [DOI:10.1109/MEI.2012.6268440]
4. Khan, S.A., Equbal, M.D., Islam, T., (2014). ANFIS based identification and location of paper insulation faults of an oil immersed transformer, 6th IEEE Power India International Conference, pp. 1-6. [DOI:10.1109/34084POWERI.2014.7117715]
5. Cui, Y., Ma, H., Saha, T., (2014). Improvement of power transformer insulation diagnosis using oil characteristics data preprocessed by SMOTEBoost technique, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 21, No. 5, pp. 2363-2373. [DOI:10.1109/TDEI.2014.004547]
6. Kim, S.W., Kim, S.J., Seo, H.D., Jung, J.R., Yang, H.J., Duval, M., (2013). New methods of DGA diagnosis using IEC TC 10 and related databases Part 1: application of gas-ratio combinations, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 20, No. 2, pp. 685-690. [DOI:10.1109/TDEI.2013.6508773]
7. Duraisamy, V., Devarajan, N., Somasundareswari, D., Vasanth, A.A.M., Sivanandam, S.N., (2007). Neuro fuzzy schemes for fault detection in power transformer, Applied Soft Computing, Vol. 7, No. 2, pp. 534-539. [DOI:10.1016/j.asoc.2006.10.001]
8. Veerasamy, V., Abdul Wahab, N. I., Ramachandran, R., Mansoor, M., Thirumeni, M., Lutfi Othman, M., (2018). High impedance fault detection in medium voltage distribution network using discrete wavelet transform and adaptive neuro-fuzzy inference system, Energies, Vol. 11, No .12, pp. 3330. [DOI:10.3390/en11123330]
9. Barbosa, F.R., Almeida, O.M., Braga, A.P.S., Tavares, C.M., (2009). Artificial Neural Network Application in Estimation of Dissolved Gases in Insulating Mineral Oil from Physical-Chemical Datas for Incipient Fault Diagnosis, 15th International Conference on Intelligent System Applications to Power Systems, IEEE, pp. 1-5. [DOI:10.1109/ISAP.2009.5352919]
10. Ushakov, V.Y., Mytnikov, A.V., Lavrinovich, V.A., Lavrinovich, A.V., (2022). Transformer Condition Control: Standardized Technologies of Condition Monitoring for High Voltage, Springer, pp. 23-68. [DOI:10.1007/978-3-030-83198-1_2]
11. Yang, M.T., Hu, L.S., (2013). Intelligent fault types diagnostic system for dissolved gas analysis of oil-immersed power transformer, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 20, No. 6, pp. 2317-2324. [DOI:10.1109/TDEI.2013.6678885]
12. Li, A., Yang, X., Dong, H., Xie, Z., Yang, C., (2018). Machine learning-based sensor data modeling methods for power transformer PHM, Sensors, Vol. 18, No .12, pp. 4430‏. [DOI:10.3390/s18124430]
13. Duval, M., (2002). A review of faults detectable by gas-in-oil analysis in transformers, IEEE Electrical Insulation Magazine, Vol. 18, No. 3, pp. 8-17. [DOI:10.1109/MEI.2002.1014963]
14. Faiz, J., Soleimani, M., (2017). Dissolved gas analysis evaluation in electric power transformers using conventional methods a review, IEEE Transactions Dielectrics Electrical Insulation, Vol. 24, No .2, pp.1239-1248. [DOI:10.1109/TDEI.2017.005959]
15. Ma, H., Saha, T.K., Ekanayake, C., Martin, D., (2015). Smart transformer for smart grid-intelligent framework and techniques for power transformer asset management, IEEE Transactions on Smart Grid, Vol. 6, No. 2, pp. 1026-1034. [DOI:10.1109/TSG.2014.2384501]
16. Silva, S., Costa, P., Santana, M., Leite, D., (2020). Evolving neuro-fuzzy network for real-time high impedance fault detection and classification, Neural Computing and Applications, Vol. 32, No .12, pp. 7597-7610. [DOI:10.1007/s00521-018-3789-2]
17. Zhou, H., Hong, K., Huang, H., Zhou, J., (2016). Transformer winding fault detection by vibration analysis methods, Applied Acoustics, Vol. 114, pp. 136-146. [DOI:10.1016/j.apacoust.2016.07.024]
18. Hashemnia, N., Abu-Siada, A., Islam, S., (2015). Improved power transformer winding fault detection using FRA diagnostics-part 1: axial displacement simulation, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 22, No. 1, pp. 556-563. [DOI:10.1109/TDEI.2014.004591]
19. Senobari, R.K., Sadeh, J., Borsi, H., (2018). Frequency response analysis (FRA) of transformers as a tool for fault detection and location: A review, Electric Power Systems Research, Vol. 155, pp. 172-183. [DOI:10.1016/j.epsr.2017.10.014]
20. Yang, X., Chen, W., Li, A., Yang, C., Xie, Z., Dong, H., (2019). BA-PNN-based methods for power transformer fault diagnosis, Advanced engineering informatics, Vol. 39, pp. 178-185. [DOI:10.1016/j.aei.2019.01.001]
21. Bacha, K., Souahlia, S., Gossa, M., (2012). Power transformer fault diagnosis based on dissolved gas analysis by support vector machine, Electric Power Systems Research, Vol. 83, No .1, pp. 73-79. [DOI:10.1016/j.epsr.2011.09.012]
22. Zhang, D., Li, C., Shahidehpour, M., Wu, Q., Zhou, B., Zhang, C., Huang, W., (2022). A bi-level machine learning method for fault diagnosis of oil-immersed transformers with feature explainability, International Journal of Electrical Power & Energy Systems, Vol. 134, pp. 107356. [DOI:10.1016/j.ijepes.2021.107356]
23. Taheri, B., Sedighizadeh, M., (2021). A moving window average method for internal fault detection of power transformers, Cleaner Engineering and Technology, Vol. 4, pp. 100195. [DOI:10.1016/j.clet.2021.100195]
24. Tavakoli, A., De Maria, L., Valecillos, B., Bartalesi, D., Garatti, S., Bittanti, S., (2020). A Machine Learning approach to fault detection in transformers by using vibration data, IFAC-PapersOnLine, Vol. 53, No .2, pp. 13656-13661. [DOI:10.1016/j.ifacol.2020.12.866]
25. Yu, S., Zhao, D., Chen, W., Hou, H., (2016). Oil-immersed power transformer internal fault diagnosis research based on probabilistic neural network, Procedia Computer Science, Vol. 83, pp. 1327-1331. [DOI:10.1016/j.procs.2016.04.276]
26. Malik, H., Yadav, A.K., Mishra, S., Mehto, T., (2013). Application of neuro-fuzzy scheme to investigate the winding insulation paper deterioration in oil-immersed power transformer, International Journal of Electrical Power & Energy Systems, Vol. 53, pp. 256-271. [DOI:10.1016/j.ijepes.2013.04.023]
27. Senobari, R.K., Sadeh, J., Borsi, H., (2018). Frequency response analysis (FRA) of transformers as a tool for fault detection and location: A review, Electric Power Systems Research, Vol. 155, pp. 172-183. [DOI:10.1016/j.epsr.2017.10.014]
28. Yadaiah, N., Ravi, N., (2011). Internal fault detection techniques for power transformers, Applied Soft Computing, Vol. 11, No .8, 5259-5269. [DOI:10.1016/j.asoc.2011.05.034]
29. Zakaria, R., Le Ruyet, D., (2016). Theoretical analysis of the power spectral density for FFT-FBMC signals, IEEE Communications Letters, Vol. 20, No. 9, pp. 1748-1751. [DOI:10.1109/LCOMM.2016.2588497]
30. Atto, A.M., Trouvé, E., Nicolas, J.M., Lê, T.T., (2016). Wavelet operators and multiplicative observation models-Application to sar image time-series analysis, IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 11, pp. 6606-6624. [DOI:10.1109/TGRS.2016.2587626]
31. Prabhakar, S., Mohanty, A.R., Sekhar, A.S., (2002). Application of discrete wavelet transform for detection of ball bearing race faults, Tribology International, Vol. 35, No. 12, pp. 793-800. [DOI:10.1016/S0301-679X(02)00063-4]
32. Ghods, A., Lee, H.H., (2016). Probabilistic frequency-domain discrete wavelet transform for better detection of bearing faults in induction motors, Neurocomputing, Vol. 188, pp. 206-216. [DOI:10.1016/j.neucom.2015.06.100]
33. Feldman, M., (2011). Hilbert transform in vibration analysis, Mechanical systems and signal processing, Vol. 25, No. 3, pp. 735-802. [DOI:10.1016/j.ymssp.2010.07.018]
34. Treml, A.E., Flauzino, R.A., Brito, G.C., (2019). EMD and MCSA improved via Hilbert Transform analysis on asynchronous machines for broken bar detection using vibration analysis, IEEE Milan PowerTech Conf., pp. 1-6. [DOI:10.1109/PTC.2019.8810643]
35. Thakur, G., Wu, H.T., (2011). Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples, SIAM Journal on Mathematical Analysis, Vol. 43, No. 5, pp. 2078-2095. [DOI:10.1137/100798818]
36. Wang, S., Chen, X., Selesnick, I. W., Guo, Y., Tong, C., Zhang, X., (2018). Matching synchrosqueezing transform: A useful tool for characterizing signals with fast varying instantaneous frequency and application to machine fault diagnosis, Mechanical Systems and Signal Processing, Vol. 100, pp. 242-288. [DOI:10.1016/j.ymssp.2017.07.009]
37. Wu, G., Zhou, Y., (2018). Seismic data analysis using synchrosqueezing short time Fourier transform, Journal of Geophysics and Engineering, Vol. 54, No. 4, pp. 1663-1672. [DOI:10.1088/1742-2140/aabf1d]


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saeid M, Zeinoddini-Meymand H, abootorabi zarchi D. Fault detection and condition assessment of power transformers using practical signal processing methods. ieijqp. 2022; 11 (1) :44-56
URL: http://ieijqp.ir/article-1-841-fa.html

سعید مرتضی، زین الدینی میمند حامد، ابوترابی زارچی داود. تشخیص خطا و ارزیابی وضعیت ترانسفورماتورهای قدرت با استفاده از روش‌های کاربردی پردازش سیگنال. نشریه کیفیت و بهره وری صنعت برق ایران. 1401; 11 (1) :56-44

URL: http://ieijqp.ir/article-1-841-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 11، شماره 1 - ( 1-1401 ) برگشت به فهرست نسخه ها
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.04 seconds with 28 queries by YEKTAWEB 4463