[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 10، شماره 1 - ( 1-1400 ) ::
جلد 10 شماره 1 صفحات 35-51 برگشت به فهرست نسخه ها
پیش‌بینی کوتاه مدت مصرف بار الکتریکی با استفاده از شبکه‌های عصبی عمیق CNN و LSTM
سینا قصایی، رضا روانمهر*
دانشکده مهندسی- گروه مهندسی کامپیوتر-واحد تهران مرکزی-دانشگاه آزاد اسلامی- تهران- ایران
چکیده:   (1284 مشاهده)
 امروزه انرژی الکتریسیته یکی از اساسی‌ترین نیازهای جوامع بشری محسوب می‌شود به گونه‌ای که تمام فعالیت‌های صنعتی و بخش زیادی از فعالیت‌های اجتماعی، اقتصادی، کشاورزی و ... با اتکا به این انرژی انجام می‌شود، بنابراین کیفیت و تداوم انرژی الکتریسیته از اهمیت بسزایی برخوردار است. هدف این پژوهش آن است که بر اساس عوامل موثر بر بار الکتریکی که دارای روابط پیچیده غیرخطی هستند و عمدتاً شامل تغییرات آب و هوا و نوسانات دوره‌ای روزانه و هفتگی مصرف می‌باشند به پیش‌بینی تغییرات مصرف بار کوتاه مدت دست یابد. روش پیشنهادی یک شبکه عصبی ترکیبی، با استفاده از یادگیری عمیق می‌باشد که از ترکیب دو معماری CNN و LSTM ایجاد شده است. معماری CNN با توجه به قابلیت آن در استخراج الگوهای موجود در داده و معماری LSTM بر پایه توانایی آن در پیش‌بینی سری‌های زمانی، مورد استفاده قرار گرفته‌اند. رویکرد ارائه شده با استفاده از پیش‌بینی آب و هوای ساعات آینده و الگوی مصرف بار الکتریکی در ساعات گذشته، قادر به پیش‌بینی الگوی مصرف آینده خواهد بود. نتایج ارزیابی نشان می‌دهد که دقت پیش‌بینی بر اساس معیارهای MAPE ، RMSE، RSEوCORR در مقایسه با بهترین روش‌های موجود بهبود یافته است.
واژه‌های کلیدی: پیش‌بینی کوتاه مدت، مصرف بار الکتریکی، شبکه‌های عصبی کانولوشن، شبکه‌های عصبی حافظه طولانی کوتاه-مدت، یادگیری عمیق
متن کامل [PDF 2016 kb]   (277 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1399/4/12 | پذیرش: 1399/9/8 | انتشار: 1400/1/17
فهرست منابع
1. Singh, P., Dwivedi P., "Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem", Applied Energy, Vol. 217, pp. 537-549, 2018. [DOI:10.1016/j.apenergy.2018.02.131]
2. Ertugrul, Ö F., "Forecasting electricity load by a novel recurrent extreme learning machines approach", International Journal of Electrical Power & Energy Systems, Vol. 78, No. 4, pp. 29-435, 2016. [DOI:10.1016/j.ijepes.2015.12.006]
3. Abedinia, O., Amjady, N., "Short‐term load forecast of electrical power system by radial basis function neural network and new stochastic search algorithm", International Transactions on Electrical Energy Systems, Vol 26, pp. 1511-1525, 2016. [DOI:10.1002/etep.2160]
4. Liu, M., Shi, Y., Fang, F., "Load forecasting and operation strategy design for CCHP systems using forecasted loads", IEEE Trans Control Syst Technol, Vol. 1672, pp 1684-1723, 2015. [DOI:10.1109/TCST.2014.2381157]
5. Li, L., Sun, J., Wang, C., Zhou, Y., Lin, K., "Enhanced Gaussian process mixture model for short-term electric load forecasting", Information Sciences, Vol 477, pp. 386-398, 2019. [DOI:10.1016/j.ins.2018.10.063]
6. Taylor, J., W., McSharry, P., "Univariate methods for short-term load forecasting", In Advances in Electric Power and Energy Systems: Load and Price Forecasting, Wiley, Vol. 2, pp. 17-39, 2017. [DOI:10.1002/9781119260295.ch2]
7. Fan, G-F, Peng, L-L, Hong, W-C., "Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model", Applied Energy, Vol. 224, pp. 13-33, 2018. [DOI:10.1016/j.apenergy.2018.04.075]
8. Zhang, B., Liu, W., Li, S., Wang, W., Zou, H., Dou, Z., "Short-term load forecasting based on wavelet neural network with adaptive mutation bat optimization algorithm", IEEJ Trans. Electr. Electron. Eng, Vol. 14, pp. 376-382, 2019. [DOI:10.1002/tee.22818]
9. Yang, A., Li, W., Yang, X., "Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines", Knowledge-Based Systems, Vol. 163, pp. 159-173, 2019. [DOI:10.1016/j.knosys.2018.08.027]
10. Jahangoshai-Rezaee, M., Dadkhah, M., Falahinia, M., "Integrating neuro-fuzzy system and evolutionary optimization algorithms for short-term power generation forecasting", International Journal of Energy Sector Managemen, Vol. 13, No. 4, pp.828-845, 2019 [DOI:10.1108/IJESM-09-2018-0015]
11. Borovykh, A., Bohte, S., Oosterlee, C W., "Conditional Time Series Forecasting with Convolutional Neural Networks", arXiv:1703.04691, 2017.
12. Hong, W-C., Fan, G-F., "Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting", Energies, Vol. 12, Article. 1093, 2019. [DOI:10.3390/en12061093]
13. Liang, Y., Niu, D., Hong W C., "Short term load forecasting based on feature extraction and improved general regression neural network model", Energy, Vol. 166, pp. 653-663, 2019. [DOI:10.1016/j.energy.2018.10.119]
14. Ribeiro, G T., Mariani, V C., Coelho, L D S., "Enhanced ensemble structures using wavelet neural networks applied to short-term load forecasting", Engineering Applications of Artificial Intelligence, Vol. 82, pp. 272-281, 2019. [DOI:10.1016/j.engappai.2019.03.012]
15. Hernandez, L., Baladron, C., Aguiar, J M., Carro B., Sanchez-Esguevillas, A J., Lloret J., Massana, J., "A survey on electric power demand forecasting: future trends in smart grids, microgrids and smart buildings", IEEE Communications Surveys & Tutorials, Vol. 16, No. 3, pp 1460-1495, 2014. [DOI:10.1109/SURV.2014.032014.00094]
16. LeCun, Y., Bengio, Y., Hinton, G., "Deep learning", Nature, Vol. 521, No. 7553, pp. 436, 2015. [DOI:10.1038/nature14539]
17. Lei, M., Tang, L., Li, M., Ye, Z., Pan, L., "Forecasting Short-Term Residential Electricity Consumption Using a Deep Fusion Model", In Proceedings of Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering, Springer, Vol. 529, pp 359-371, 2019. [DOI:10.1007/978-981-13-2291-4_36]
18. Kim, J., Moon, J., Hwang, E., Kanga, P., "Recurrent inception convolution neural network for multi short-term load forecasting", Energy and Buildings, Vol. 194, pp. 328-341, 2019. [DOI:10.1016/j.enbuild.2019.04.034]
19. Khan, A B M., Javaid, N., Nazeer, O., Zahid, M., Akbar, M., Hameed Khan, M., "Hourly Electricity Load Forecasting in Smart Grid Using Deep Learning Techniques", In: Innovative Mobile and Internet Services in Ubiquitous Computing, Advances in Intelligent Systems and Computing, Springer, Vol. 994, pp. 185-196, 2020. [DOI:10.1007/978-3-030-22263-5_18]
20. Yazici, I., Temizer, L., Beyca, O F., "Short Term Electricity Load Forecasting with a Nonlinear Autoregressive Neural Network with Exogenous Variables (NarxNet)", In: Industrial Engineering in the Big Data Era. Lecture Notes in Management and Industrial Engineering, Springer, pp. 259-270, 2019. [DOI:10.1007/978-3-030-03317-0_22]
21. Guo, Z., Zhou, K., Hang, X. Z., Yang, S., "A deep learning model for short-term power load and probability density forecasting", Energy, Vol. 160, pp. 1186-1200, 2018. [DOI:10.1016/j.energy.2018.07.090]
22. Sherstinsky, A., "Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network", Physica D: Nonlinear Phenomena, Vol. 404, Article. 132306, 2020. [DOI:10.1016/j.physd.2019.132306]
23. Binkowski, M., Marti, G., Donnat, P., "Autoregressive Convolutional Neural Networks for Asynchronous Time Series", In proceedings of the 35th International Conference on Machine Learning, PMLR 80, 1-16, 2018.
24. Zhang, B., Wu, J-L., Chang, P-C., "A multiple time series-based recurrent neural network for short-term load forecasting", Soft Computing, Vol. 22, No. 12, pp. 4099-4112, 2018. [DOI:10.1007/s00500-017-2624-5]
25. Shi, H., Xu, M., Ma, Q., Zhang, C., Li, R., Li, F., "A Whole System Assessment of Novel Deep Learning Approach on Short-Term Load Forecasting", Energy Procedia, Vol. 142, pp. 2791-2796, 2017. [DOI:10.1016/j.egypro.2017.12.423]
26. Kong, W., Dong, Z Y., Jia, Y., Hill, D J., Xu, Y., Zhang, Y. "Short-term residential load forecasting based on LSTM recurrent neural network", IEEE Transactions on Smart Grid, Vol. 10, No. 1, pp. 841-851, 2019. [DOI:10.1109/TSG.2017.2753802]
27. Ke, K., Hongbin, S., Chengkang, Z., Brown, C., "Short-term electrical load forecasting method based on stacked auto-encoding and GRU neural network", Evolutionary Intelligence, Vol. 12, pp. 385-394, 2019. [DOI:10.1007/s12065-018-00196-0]
28. Lai, G., Chang, W-C., Yang, Y., Lie, H., "Modeling Long-and Short-Term Temporal Patterns with Deep Neural Networks", In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 95-104, 2018. [DOI:10.1145/3209978.3210006]
29. He. W., "Load forecasting via deep neural networks", Procedia Computer Science, Vol 122, pp. 308-314, 2017. [DOI:10.1016/j.procs.2017.11.374]
30. WenJie, Z., Jian, Q., Feng, M., JunJie, F., Bo, D., WenWu, Y., "Short-term power load forecasting using integrated methods based on long short-term memory", Science China Technological Sciences, Vol. 63, pp 614-624, 2020. [DOI:10.1007/s11431-019-9547-4]
31. Wu, L., Kong, C., Hao, X., Chen, W., "A Short-Term Load Forecasting Method Based on GRU-CNN Hybrid Neural Network Model", Mathematical Problems in Engineering, Article 1428104, 2020. [DOI:10.1155/2020/1428104]
32. Zhang, Y., Qian, A., Zhaoyu, L., Shuangrui, Y., Huang, K., Yousif, M., Tianguang, L., "Data augmentation strategy for small sample short‐term load forecasting of distribution transformer", International Transactions on Electrical Energy Systems, First published online:11 November 2019. [DOI:10.1002/2050-7038.12209]
33. Shen, M., Xu, Q., Wang, K., Tu, M., Wu, B., "Short-Term Bus Load Forecasting Method Based on CNN-GRU Neural Network", In International Forum on Smart Grid Protection and Control Springer, Vol. 585, pp. 711-722, 2020. [DOI:10.1007/978-981-13-9783-7_58]
34. Krizhevsky, A., Sutskever, I., Hinton, G E., "Imagenet classification with deep convolutional neural networks", In Advances in neural information processing systems, pp.1097-1105, 2012
35. Tian, C., Ma, J., Zhang, C., Zhan, P., "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network", Energies, Vol. 11, No. 12, pp. 3493, 2018 [DOI:10.3390/en11123493]
36. Hochreiter, S., Schmidhuber, J., "Long short-term memory", Neural Computation, Vol. 9, No. 8, pp 1735-1780, 1997. [DOI:10.1162/neco.1997.9.8.1735]
37. Amarasinghe, K., Marino, D L., Manic, M., "Deep neural networks for energy load forecasting", In IEEE 26th International Symposium on Industrial Electronics (ISIE), pp 1483-1488, 2017 [DOI:10.1109/ISIE.2017.8001465]
38. Hafeez, G., Javaid, N., Ullah, S., Iqbal, Z., Khan, M., Rehman, A., Ziaullah., "Short Term Load Forecasting based on Deep Learning for Smart Grid Applications", In Innovative Mobile and Internet Services in Ubiquitous Computing Springer, pp 276-288, 2018. [DOI:10.1007/978-3-319-93554-6_25]
39. Bouktif, S., Fiaz, A., Ouni, A., Serhani, M A., "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting", Energies, Vol. 13, No. 2, Article. 391, 2020. [DOI:10.3390/en13020391]
40. Zheng, J., Xu, C., Zhang, Z., Li, X., "Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network", In IEEE 51st Annual Conference on Information Sciences and Systems (CISS), pp. 1-6, 2017.
41. Wang, J Q., Du, Y., Wang, J., "LSTM based long-term energy consumption prediction with periodicity", Energy, Vol. 197,Article. 117197, 2020. [DOI:10.1016/j.energy.2020.117197]
42. Dong, X., Qian, L., Huang, L., "Short-term load forecasting in smart grid: A combined CNN and K-means clustering approach", In IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 119-125, 2017.
43. Gupta, P., Malsa, N., Saxena, N., Agarwal, S., Singh, S P., "Short-Term Load Forecasting Using Parametric and Non-parametric Approaches", In Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing Springer, Vol. 1053, pp. 747-755, 2020. [DOI:10.1007/978-981-15-0751-9_68]
44. Kingma, D P., Ba, J., "Adam: A method for stochastic optimization", Proceedings of the International Conference on Learning Representations (ICLR), 2015.
45. Trindade, A., "UCI Machine Learning Repository", ElectricityLoadDiagrams20112014 DataSet,
46. https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
47. Box, G E., Jenkins, G M., Reinsel, G C., Ljung, G M., "Time series analysis: forecasting and control", John Wiley & Sons, 2015.
48. Yu, H F., Rao, N., Dhillon, I S., "Temporal regularized matrix factorization for high-dimensional time series prediction", In Proceedings of Advances in Neural Information Processing Systems, Vol. 29, pp. 847-855, 2016.
49. Zhang, G P., "Time series forecasting using a hybrid ARIMA and neural network model", Neurocomputing, Vol. 50, pp. 159-175, 2003. [DOI:10.1016/S0925-2312(01)00702-0]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghassaei S, Ravanmehr R. Short-term Load Forecasting using Convolutional Neural Network and Long Short-term Memory. ieijqp. 2021; 10 (1) :35-51
URL: http://ieijqp.ir/article-1-757-fa.html

قصایی سینا، روانمهر رضا. پیش‌بینی کوتاه مدت مصرف بار الکتریکی با استفاده از شبکه‌های عصبی عمیق CNN و LSTM. نشریه کیفیت و بهره وری صنعت برق ایران. 1400; 10 (1) :35-51

URL: http://ieijqp.ir/article-1-757-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 10، شماره 1 - ( 1-1400 ) برگشت به فهرست نسخه ها
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.04 seconds with 28 queries by YEKTAWEB 4331