[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
صاحب امتیاز::
درباره انجمن::
تماس با ما::
تسهیلات پایگاه::
cope::
metrics::
تعارض منافع::
::
پایگاه های نمایه کننده
..
DOI
کلیک کنید
..
IEEE
..
DOR

..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 13، شماره 3 - ( 9-1403 ) ::
جلد 13 شماره 3 صفحات 0-0 برگشت به فهرست نسخه ها
سرمایه‌گذاری در تکنولوژی‌های باتری مقیاس بزرگ برای شبکه‌های برق هوشمند با استفاده از الگوریتم بهینه‌سازی گلف: تحلیل اقتصادی و بررسی تکنولوژی‌های مختلف باتری
وحید خادمی*1 ، زهره مهرابادی
چکیده:   (420 مشاهده)
با توجه به اهمیت روزافزون تکنولوژی‌های ذخیره‌سازی انرژی در مقیاس بزرگ برای بهبود عملکرد شبکه‌های برق، این مقاله به بررسی سرمایه‌گذاری در این تکنولوژی‌ها از منظر اقتصادی می‌پردازد. تمرکز اصلی مقاله بر روی استفاده از تکنولوژی‌های باتری‌های مقیاس بزرگ مانند باتری‌های ردوکس وانادیوم، باتری‌های پلی‌سولفید-برم، و باتری‌های روی-برم است که به دلیل ویژگی‌های خاص خود نظیر طول عمر بالا، کارایی مناسب، و هزینه‌های مقرون به صرفه، برای شبکه‌های برق هوشمند بسیار مناسب هستند. مدل پیشنهادی این تحقیق با بهره‌گیری از الگوریتم بهینه‌سازی گلف طراحی شده است، که به عنوان نوآوری اصلی این پژوهش به‌شمار می‌آید. این الگوریتم به طور خاص برای بهینه‌سازی عملکرد و سرمایه‌گذاری در سیستم‌های ذخیره‌سازی انرژی در مقیاس بزرگ به کار می‌رود. با استفاده از این مدل، تاثیرات اقتصادی استفاده از انواع مختلف تکنولوژی‌های باتری مورد تحلیل قرار می‌گیرد. نتایج شبیه‌سازی‌ها نشان می‌دهد که در نظر گرفتن تکنولوژی‌های مختلف باتری و به کارگیری الگوریتم بهینه‌سازی گلف می‌تواند تأثیرات اقتصادی قابل توجهی در بهینه‌سازی عملکرد سیستم‌های ذخیره‌سازی انرژی داشته باشد.
واژه‌های کلیدی: الگوریتم های تکاملی، بهینه سازی، باتری های مقیاس بزرگ، شبکه های هوشمند
     
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1403/6/16 | پذیرش: 1403/10/28 | انتشار: 1404/1/17
فهرست منابع
1. S. E. Bibri, "A foundational framework for smart sustainable city development: Theoretical, disciplinary, and discursive dimensions and their synergies," Sustainable Cities and Society, vol. 38, pp. 758-794, 2018. [DOI:10.1016/j.scs.2017.12.032]
2. H. Ahvenniemi, A. Huovila, I. Pinto-Seppä, and M. Airaksinen, "What are the differences between sustainable and smart cities?," Cities, vol. 60, pp. 234-245, 2017. [DOI:10.1016/j.cities.2016.09.009]
3. B. N. Silva, M. Khan, and K. Han, "Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities," Sustainable Cities and Society, vol. 38, pp. 697-713, 2018. [DOI:10.1016/j.scs.2018.01.053]
4. A. Lyden, R. Pepper, and P. G. Tuohy, "A modelling tool selection process for planning of community scale energy systems including storage and demand side management," Sustainable cities and society, vol. 39, pp. 674-688, 2018. [DOI:10.1016/j.scs.2018.02.003]
5. F. C. Robert, G. S. Sisodia, and S. Gopalan, "A critical review on the utilization of storage and demand response for the implementation of renewable energy microgrids," Sustainable cities and society, vol. 40, pp. 735-745, 2018. [DOI:10.1016/j.scs.2018.04.008]
6. M. Motalleb, P. Siano, and R. Ghorbani, "Networked stackelberg competition in a demand response market," Applied energy, vol. 239, pp. 680-691, 2019. [DOI:10.1016/j.apenergy.2019.01.174]
7. M. Motalleb and R. Ghorbani, "Non-cooperative game-theoretic model of demand response aggregator competition for selling stored energy in storage devices," Applied Energy, vol. 202, pp. 581-596, 2017. [DOI:10.1016/j.apenergy.2017.05.186]
8. F. Keck, M. Lenzen, A. Vassallo, and M. Li, "The impact of battery energy storage for renewable energy power grids in Australia," Energy, vol. 173, pp. 647-657, 2019. [DOI:10.1016/j.energy.2019.02.053]
9. Z. Luburić, H. Pandžić, T. Plavšić, L. Teklić, and V. Valentić, "Role of energy storage in ensuring transmission system adequacy and security," Energy, vol. 156, pp. 229-239, 2018. [DOI:10.1016/j.energy.2018.05.098]
10. S.-Y. Lee, I.-B. Lee, and J. Han, "Design under uncertainty of carbon capture, utilization and storage infrastructure considering profit, environmental impact, and risk preference," Applied Energy, vol. 238, pp. 34-44, 2019. [DOI:10.1016/j.apenergy.2019.01.058]
11. J. F. Carneiro, C. R. Matos, and S. Van Gessel, "Opportunities for large-scale energy storage in geological formations in mainland Portugal," Renewable and Sustainable Energy Reviews, vol. 99, pp. 201-211, 2019. [DOI:10.1016/j.rser.2018.09.036]
12. R. Hemmati, S. M. S. Ghiasi, and A. Entezariharsini, "Power fluctuation smoothing and loss reduction in grid integrated with thermal-wind-solar-storage units," Energy, vol. 152, pp. 759-769, 2018. [DOI:10.1016/j.energy.2018.04.004]
13. X. Zhang and A. J. Conejo, "Coordinated investment in transmission and storage systems representing long-and short-term uncertainty," IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 7143-7151, 2018. [DOI:10.1109/TPWRS.2018.2842045]
14. Y. Zheng et al., "Optimal operation of battery energy storage system considering distribution system uncertainty," IEEE Transactions on Sustainable Energy, vol. 9, no. 3, pp. 1051-1060, 2018. [DOI:10.1109/TSTE.2017.2762364]
15. M. Katsanevakis, R. A. Stewart, and L. Junwei, "A novel voltage stability and quality index demonstrated on a low voltage distribution network with multifunctional energy storage systems," Electric Power Systems Research, vol. 171, pp. 264-282, 2019. [DOI:10.1016/j.epsr.2019.01.043]
16. Y. Shuai et al., "Failure probability estimation of overhead transmission lines considering the spatial and temporal variation in severe weather," Journal of Modern Power Systems and Clean Energy, vol. 7, no. 1, pp. 131-138, 2019. [DOI:10.1007/s40565-017-0370-4]
17. M. R. Salehizadeh, A. Rahimi-Kian, and M. Oloomi-Buygi, "Security-based multi-objective congestion management for emission reduction in power system," International Journal of Electrical Power & Energy Systems, vol. 65, pp. 124-135, 2015. [DOI:10.1016/j.ijepes.2014.09.031]
18. M. R. Salehizadeh, A. Rahimi-Kian, and K. Hausken, "A leader-follower game on congestion management in power systems," in Game Theoretic Analysis of Congestion, Safety and Security: Springer, 2015, pp. 81-112. [DOI:10.1007/978-3-319-13009-5_4]
19. R.-C. Leou, "An economic analysis model for the energy storage system applied to a distribution substation," International Journal of Electrical Power & Energy Systems, vol. 34, no. 1, pp. 132-137, 2012. [DOI:10.1016/j.ijepes.2011.09.016]
20. B. Guo, M. Niu, X. Lai, and L. Chen, "Application research on large-scale battery energy storage system under Global Energy Interconnection framework," Global Energy Interconnection, vol. 1, no. 1, pp. 79-86, 2018.
21. V. Mehra, R. Amatya, and R. J. Ram, "Estimating the value of demand-side management in low-cost, solar micro-grids," Energy, vol. 163, pp. 74-87, 2018. [DOI:10.1016/j.energy.2018.07.204]
22. M. Sedghi, A. Ahmadian, and M. Aliakbar-Golkar, "Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation," IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 304-316, 2016. [DOI:10.1109/TPWRS.2015.2404533]
23. N. Jayasekara, M. A. Masoum, and P. J. Wolfs, "Optimal operation of distributed energy storage systems to improve distribution network load and generation hosting capability," IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 250-261, 2016. [DOI:10.1109/TSTE.2015.2487360]
24. M. Daghi, M. Sedghi, A. Ahmadian, and M. Aliakbar-Golkar, "Factor analysis based optimal storage planning in active distribution network considering different battery technologies," Applied energy, vol. 183, pp. 456-469, 2016. [DOI:10.1016/j.apenergy.2016.08.190]
25. H. Xing, H. Cheng, Y. Zhang, and P. Zeng, "Active distribution network expansion planning integrating dispersed energy storage systems," IET Generation, Transmission & Distribution, vol. 10, no. 3, pp. 638-644, 2016. [DOI:10.1049/iet-gtd.2015.0411]
26. H. Saboori, R. Hemmati, and V. Abbasi, "Multistage distribution network expansion planning considering the emerging energy storage systems," Energy conversion and management, vol. 105, pp. 938-945, 2015. [DOI:10.1016/j.enconman.2015.08.055]
27. H. Saboori, R. Hemmati, and M. A. Jirdehi, "Reliability improvement in radial electrical distribution network by optimal planning of energy storage systems," Energy, vol. 93, pp. 2299-2312, 2015. [DOI:10.1016/j.energy.2015.10.125]
28. A. Azizivahed et al., "Energy Management Strategy in Dynamic Distribution Network Reconfiguration considering Renewable Energy Resources and Storage," IEEE Transactions on Sustainable Energy, 2019. [DOI:10.1109/PESGM41954.2020.9281964]
29. Y. Gao, Q. Ai, M. Yousif, and X. Wang, "Source-load-storage consistency collaborative optimization control of flexible DC distribution network considering multi-energy complementarity," International Journal of Electrical Power & Energy Systems, vol. 107, pp. 273-281, 2019. [DOI:10.1016/j.ijepes.2018.11.033]
30. L. A. Wong, V. K. Ramachandaramurthy, P. Taylor, J. Ekanayake, S. L. Walker, and S. Padmanaban, "Review on the optimal placement, sizing and control of an energy storage system in the distribution network," Journal of Energy Storage, vol. 21, pp. 489-504, 2019. [DOI:10.1016/j.est.2018.12.015]
31. A. Ahmadian, M. Sedghi, H. Fgaier, B. Mohammadi-ivatloo, M. A. Golkar, and A. Elkamel, "PEVs Data Mining Based on Factor Analysis Method for Energy Storage and DG Planning in Active Distribution Network: Introducing S2S Effect," Energy, 2019. [DOI:10.1016/j.energy.2019.03.097]
32. K. Bangash, M. Farrag, and A. Osman, "Investigation of Energy Storage Batteries in Stability Enforcement of Low Inertia Active Distribution Network," Technology and Economics of Smart Grids and Sustainable Energy, vol. 4, no. 1, p. 1, 2019. [DOI:10.1007/s40866-018-0059-4]
33. G. Shaoyun, X. Zhengyang, L. Hong, L. Mengyi, Y. Zan, and Z. Chenghao, "Coordinated Voltage Control for Active Distribution Network Considering the Impact of Energy Storage," Energy Procedia, vol. 158, pp. 1122-1127, 2019. [DOI:10.1016/j.egypro.2019.01.277]
34. N. Yan, B. Zhang, W. Li, and S. Ma, "Hybrid Energy Storage Capacity Allocation Method for Active Distribution Network Considering Demand Side Response," IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1-4, 2019. [DOI:10.1109/TASC.2018.2889860]
35. X. Wen, Y. Yu, Z. Xu, J. Zhao, and J. Li, "Optimal distributed energy storage investment scheme for distribution network accommodating high renewable penetration," International Transactions on Electrical Energy Systems, p. e12002, 2019. [DOI:10.1002/2050-7038.12002]
36. [36] J. Li, Z. Xu, J. Zhao, S. Chai, Y. Yu, and X. Xu, "Model Predictive Control Based Ramp Minimization in Active Distribution Network Using Energy Storage Systems," Electric Power Components and Systems, pp. 1-11, 2019. [DOI:10.1080/15325008.2019.1577929]
37. L. Bai, T. Jiang, F. Li, H. Chen, and X. Li, "Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability," Applied Energy, vol. 210, pp. 1082-1091, 2018. [DOI:10.1016/j.apenergy.2017.07.004]
38. J. Lizana, D. Friedrich, R. Renaldi, and R. Chacartegui, "Energy flexible building through smart demand-side management and latent heat storage," Applied energy, vol. 230, pp. 471-485, 2018. [DOI:10.1016/j.apenergy.2018.08.065]
39. N. L. Rajakovic and V. M. Shiljkut, "Long-term forecasting of annual peak load considering effects of demand-side programs," Journal of Modern Power Systems and Clean Energy, vol. 6, no. 1, pp. 145-157, 2018. [DOI:10.1007/s40565-017-0328-6]
40. T. M. Gür, "Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage," Energy & Environmental Science, vol. 11, no. 10, pp. 2696-2767, 2018. [DOI:10.1039/C8EE01419A]
41. F. A. Chacra, P. Bastard, G. Fleury, and R. Clavreul, "Impact of energy storage costs on economical performance in a distribution substation," IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 684-691, 2005. [DOI:10.1109/TPWRS.2005.846091]
42. I. Gyuk, S. Eckroad, L. Mears, H. Gotschall, and H. Kamath, "EPRI-DOE handbook of energy storage for transmission and distribution applications," Environment, vol. 2, p. 512, 2003.
43. M. Alhaider and L. Fan, "Planning Energy Storage and Photovoltaic Panels for Demand Response With Heating Ventilation and Air Conditioning Systems," IEEE Transactions on Industrial Informatics, vol. 14, no. 11, pp. 5029-5037, Nov. 2018. [DOI:10.1109/TII.2018.2833441]
44. H. Xiao, W. Pei, Z. Dong and L. Kong, "Bi-level planning for integrated energy systems incorporating demand response and energy storage under uncertain environments using novel metamodel," CSEE Journal of Power and Energy Systems, vol. 4, no. 2, pp. 155-167, June 2018. [DOI:10.17775/CSEEJPES.2017.01260]
45. S. E. Bibri, "A foundational framework for smart sustainable city development: Theoretical, disciplinary, and discursive dimensions and their synergies," Sustainable Cities and Society, vol. 38, pp. 758-794, 2018. [DOI:10.1016/j.scs.2017.12.032]
46. H. Ahvenniemi, A. Huovila, I. Pinto-Seppä, and M. Airaksinen, "What are the differences between sustainable and smart cities?," Cities, vol. 60, pp. 234-245, 2017. [DOI:10.1016/j.cities.2016.09.009]
47. B. N. Silva, M. Khan, and K. Han, "Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities," Sustainable Cities and Society, vol. 38, pp. 697-713, 2018. [DOI:10.1016/j.scs.2018.01.053]
48. A. Lyden, R. Pepper, and P. G. Tuohy, "A modelling tool selection process for planning of community scale energy systems including storage and demand side management," Sustainable cities and society, vol. 39, pp. 674-688, 2018. [DOI:10.1016/j.scs.2018.02.003]
49. F. C. Robert, G. S. Sisodia, and S. Gopalan, "A critical review on the utilization of storage and demand response for the implementation of renewable energy microgrids," Sustainable cities and society, vol. 40, pp. 735-745, 2018. [DOI:10.1016/j.scs.2018.04.008]
50. M. Motalleb, P. Siano, and R. Ghorbani, "Networked stackelberg competition in a demand response market," Applied energy, vol. 239, pp. 680-691, 2019. [DOI:10.1016/j.apenergy.2019.01.174]
51. M. Motalleb and R. Ghorbani, "Non-cooperative game-theoretic model of demand response aggregator competition for selling stored energy in storage devices," Applied Energy, vol. 202, pp. 581-596, 2017. [DOI:10.1016/j.apenergy.2017.05.186]
52. F. Keck, M. Lenzen, A. Vassallo, and M. Li, "The impact of battery energy storage for renewable energy power grids in Australia," Energy, vol. 173, pp. 647-657, 2019. [DOI:10.1016/j.energy.2019.02.053]
53. Z. Luburić, H. Pandžić, T. Plavšić, L. Teklić, and V. Valentić, "Role of energy storage in ensuring transmission system adequacy and security," Energy, vol. 156, pp. 229-239, 2018. [DOI:10.1016/j.energy.2018.05.098]
54. S.-Y. Lee, I.-B. Lee, and J. Han, "Design under uncertainty of carbon capture, utilization and storage infrastructure considering profit, environmental impact, and risk preference," Applied Energy, vol. 238, pp. 34-44, 2019. [DOI:10.1016/j.apenergy.2019.01.058]
55. J. F. Carneiro, C. R. Matos, and S. Van Gessel, "Opportunities for large-scale energy storage in geological formations in mainland Portugal," Renewable and Sustainable Energy Reviews, vol. 99, pp. 201-211, 2019. [DOI:10.1016/j.rser.2018.09.036]
56. R. Hemmati, S. M. S. Ghiasi, and A. Entezariharsini, "Power fluctuation smoothing and loss reduction in grid integrated with thermal-wind-solar-storage units," Energy, vol. 152, pp. 759-769, 2018. [DOI:10.1016/j.energy.2018.04.004]
57. X. Zhang and A. J. Conejo, "Coordinated investment in transmission and storage systems representing long-and short-term uncertainty," IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 7143-7151, 2018. [DOI:10.1109/TPWRS.2018.2842045]
58. Y. Zheng et al., "Optimal operation of battery energy storage system considering distribution system uncertainty," IEEE Transactions on Sustainable Energy, vol. 9, no. 3, pp. 1051-1060, 2018. [DOI:10.1109/TSTE.2017.2762364]
59. M. Katsanevakis, R. A. Stewart, and L. Junwei, "A novel voltage stability and quality index demonstrated on a low voltage distribution network with multifunctional energy storage systems," Electric Power Systems Research, vol. 171, pp. 264-282, 2019. [DOI:10.1016/j.epsr.2019.01.043]
60. Y. Shuai et al., "Failure probability estimation of overhead transmission lines considering the spatial and temporal variation in severe weather," Journal of Modern Power Systems and Clean Energy, vol. 7, no. 1, pp. 131-138, 2019. [DOI:10.1007/s40565-017-0370-4]
61. M. R. Salehizadeh, A. Rahimi-Kian, and M. Oloomi-Buygi, "Security-based multi-objective congestion management for emission reduction in power system," International Journal of Electrical Power & Energy Systems, vol. 65, pp. 124-135, 2015. [DOI:10.1016/j.ijepes.2014.09.031]
62. M. R. Salehizadeh, A. Rahimi-Kian, and K. Hausken, "A leader-follower game on congestion management in power systems," in Game Theoretic Analysis of Congestion, Safety and Security: Springer, 2015, pp. 81-112. [DOI:10.1007/978-3-319-13009-5_4]
63. R.-C. Leou, "An economic analysis model for the energy storage system applied to a distribution substation," International Journal of Electrical Power & Energy Systems, vol. 34, no. 1, pp. 132-137, 2012. [DOI:10.1016/j.ijepes.2011.09.016]
64. B. Guo, M. Niu, X. Lai, and L. Chen, "Application research on large-scale battery energy storage system under Global Energy Interconnection framework," Global Energy Interconnection, vol. 1, no. 1, pp. 79-86, 2018.
65. V. Mehra, R. Amatya, and R. J. Ram, "Estimating the value of demand-side management in low-cost, solar micro-grids," Energy, vol. 163, pp. 74-87, 2018. [DOI:10.1016/j.energy.2018.07.204]
66. M. Sedghi, A. Ahmadian, and M. Aliakbar-Golkar, "Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation," IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 304-316, 2016. [DOI:10.1109/TPWRS.2015.2404533]
67. N. Jayasekara, M. A. Masoum, and P. J. Wolfs, "Optimal operation of distributed energy storage systems to improve distribution network load and generation hosting capability," IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 250-261, 2016. [DOI:10.1109/TSTE.2015.2487360]
68. M. Daghi, M. Sedghi, A. Ahmadian, and M. Aliakbar-Golkar, "Factor analysis based optimal storage planning in active distribution network considering different battery technologies," Applied energy, vol. 183, pp. 456-469, 2016. [DOI:10.1016/j.apenergy.2016.08.190]
69. H. Xing, H. Cheng, Y. Zhang, and P. Zeng, "Active distribution network expansion planning integrating dispersed energy storage systems," IET Generation, Transmission & Distribution, vol. 10, no. 3, pp. 638-644, 2016. [DOI:10.1049/iet-gtd.2015.0411]
70. H. Saboori, R. Hemmati, and V. Abbasi, "Multistage distribution network expansion planning considering the emerging energy storage systems," Energy conversion and management, vol. 105, pp. 938-945, 2015. [DOI:10.1016/j.enconman.2015.08.055]
71. H. Saboori, R. Hemmati, and M. A. Jirdehi, "Reliability improvement in radial electrical distribution network by optimal planning of energy storage systems," Energy, vol. 93, pp. 2299-2312, 2015. [DOI:10.1016/j.energy.2015.10.125]
72. A. Azizivahed et al., "Energy Management Strategy in Dynamic Distribution Network Reconfiguration considering Renewable Energy Resources and Storage," IEEE Transactions on Sustainable Energy, 2019. [DOI:10.1109/PESGM41954.2020.9281964]
73. Y. Gao, Q. Ai, M. Yousif, and X. Wang, "Source-load-storage consistency collaborative optimization control of flexible DC distribution network considering multi-energy complementarity," International Journal of Electrical Power & Energy Systems, vol. 107, pp. 273-281, 2019. [DOI:10.1016/j.ijepes.2018.11.033]
74. L. A. Wong, V. K. Ramachandaramurthy, P. Taylor, J. Ekanayake, S. L. Walker, and S. Padmanaban, "Review on the optimal placement, sizing and control of an energy storage system in the distribution network," Journal of Energy Storage, vol. 21, pp. 489-504, 2019. [DOI:10.1016/j.est.2018.12.015]
75. A. Ahmadian, M. Sedghi, H. Fgaier, B. Mohammadi-ivatloo, M. A. Golkar, and A. Elkamel, "PEVs Data Mining Based on Factor Analysis Method for Energy Storage and DG Planning in Active Distribution Network: Introducing S2S Effect," Energy, 2019. [DOI:10.1016/j.energy.2019.03.097]
76. K. Bangash, M. Farrag, and A. Osman, "Investigation of Energy Storage Batteries in Stability Enforcement of Low Inertia Active Distribution Network," Technology and Economics of Smart Grids and Sustainable Energy, vol. 4, no. 1, p. 1, 2019. [DOI:10.1007/s40866-018-0059-4]
77. G. Shaoyun, X. Zhengyang, L. Hong, L. Mengyi, Y. Zan, and Z. Chenghao, "Coordinated Voltage Control for Active Distribution Network Considering the Impact of Energy Storage," Energy Procedia, vol. 158, pp. 1122-1127, 2019. [DOI:10.1016/j.egypro.2019.01.277]
78. N. Yan, B. Zhang, W. Li, and S. Ma, "Hybrid Energy Storage Capacity Allocation Method for Active Distribution Network Considering Demand Side Response," IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1-4, 2019. [DOI:10.1109/TASC.2018.2889860]
79. X. Wen, Y. Yu, Z. Xu, J. Zhao, and J. Li, "Optimal distributed energy storage investment scheme for distribution network accommodating high renewable penetration," International Transactions on Electrical Energy Systems, p. e12002, 2019. [DOI:10.1002/2050-7038.12002]
80. [36] J. Li, Z. Xu, J. Zhao, S. Chai, Y. Yu, and X. Xu, "Model Predictive Control Based Ramp Minimization in Active Distribution Network Using Energy Storage Systems," Electric Power Components and Systems, pp. 1-11, 2019. [DOI:10.1080/15325008.2019.1577929]
81. L. Bai, T. Jiang, F. Li, H. Chen, and X. Li, "Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability," Applied Energy, vol. 210, pp. 1082-1091, 2018. [DOI:10.1016/j.apenergy.2017.07.004]
82. J. Lizana, D. Friedrich, R. Renaldi, and R. Chacartegui, "Energy flexible building through smart demand-side management and latent heat storage," Applied energy, vol. 230, pp. 471-485, 2018. [DOI:10.1016/j.apenergy.2018.08.065]
83. N. L. Rajakovic and V. M. Shiljkut, "Long-term forecasting of annual peak load considering effects of demand-side programs," Journal of Modern Power Systems and Clean Energy, vol. 6, no. 1, pp. 145-157, 2018. [DOI:10.1007/s40565-017-0328-6]
84. T. M. Gür, "Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage," Energy & Environmental Science, vol. 11, no. 10, pp. 2696-2767, 2018. [DOI:10.1039/C8EE01419A]
85. F. A. Chacra, P. Bastard, G. Fleury, and R. Clavreul, "Impact of energy storage costs on economical performance in a distribution substation," IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 684-691, 2005. [DOI:10.1109/TPWRS.2005.846091]
86. I. Gyuk, S. Eckroad, L. Mears, H. Gotschall, and H. Kamath, "EPRI-DOE handbook of energy storage for transmission and distribution applications," Environment, vol. 2, p. 512, 2003.
87. M. Alhaider and L. Fan, "Planning Energy Storage and Photovoltaic Panels for Demand Response With Heating Ventilation and Air Conditioning Systems," IEEE Transactions on Industrial Informatics, vol. 14, no. 11, pp. 5029-5037, Nov. 2018. [DOI:10.1109/TII.2018.2833441]
88. H. Xiao, W. Pei, Z. Dong and L. Kong, "Bi-level planning for integrated energy systems incorporating demand response and energy storage under uncertain environments using novel metamodel," CSEE Journal of Power and Energy Systems, vol. 4, no. 2, pp. 155-167, June 2018. [DOI:10.17775/CSEEJPES.2017.01260]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khademi V, Mehrabadi Z. Investing in small power technologies for smart grids using golf optimization algorithm: Economic analysis and review of different battery technologies. ieijqp 2024; 13 (3)
URL: http://ieijqp.ir/article-1-1009-fa.html

خادمی وحید، مهرابادی زهره. سرمایه‌گذاری در تکنولوژی‌های باتری مقیاس بزرگ برای شبکه‌های برق هوشمند با استفاده از الگوریتم بهینه‌سازی گلف: تحلیل اقتصادی و بررسی تکنولوژی‌های مختلف باتری. نشریه کیفیت و بهره وری صنعت برق ایران. 1403; 13 (3)

URL: http://ieijqp.ir/article-1-1009-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 13، شماره 3 - ( 9-1403 ) برگشت به فهرست نسخه ها
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.07 seconds with 40 queries by YEKTAWEB 4710