[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 11, Issue 2 (4-2022) ::
ieijqp 2022, 11(2): 1-11 Back to browse issues page
A method for uncertainty management of solar power plants in project finance
Hossein Jadidi1 , Afshin Firouzi1 , Mohammad Ali Rastegar * 2, Majid Zandi3
1- Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Faculty of Industrial Engineering, Tarbiat Modares University, Tehran, Iran
3- Renewable Energies Engineering Department, Shahid Beheshti University, Tehran, Iran
Abstract:   (2740 Views)

Financing of infrastructures and huge projects such as utility-scale solar power plants is imperative to economic development. From the perspective of investors, financing of infrastructure projects divides into two general methods including lending and partnership. One of the methods based on lending is project finance that is the focus of this study. In loan-based investing, the lower the lender's estimate of the uncertainty (risk) of future project cash flow, the more willing lender would be to invest. The method is a limited recourse; thus, the lender tendency to partnership in the finance deal depends on the reliability on future cash flow of a project. Here, we gather the results of different studies and investigate the uncertainties led to fluctuation of the expected future income of utility-scale solar power plants. Using Monte-Carlo simulations and Maximum Likelihood Estimation, the annual probability distribution of debt service coverage ratio for a 10 MW solar power plant project has been estimated during the loan term, and we use that to calculate the probability of default for each year. Then, using sensitivity analysis of financial indices to various leverages, the appropriate ratio of debt and equity in the structure of project financing are obtained. The presented method of estimating solar power plant project income can be used for other utility-scale solar power plants using specific uncertainties for each location. Our work paves the way to a more reliable decision making for lender(s) and facilitates the process of attraction of investor(s) for project company.

Article number: 1
Keywords: Solar Power Plant, Default Probability, Project Finance, Financial Leverage, Debt Service Coverage Ratio (DSCR), Special Purpose Vehicle (SPV), Profitability Index (PI)
Full-Text [PDF 865 kb]   (630 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/12/18 | Accepted: 2022/02/16 | Published: 2022/06/19
References
1. Allouhi, A., Saadani, R., Buker, M., Kousksou, T., Jamil, A., & Rahmoune, M. (2019). Energetic, economic and environmental (3E) analyses and LCOE estimation of three technologies of PV grid-connected systems under different climates. Solar Energy, 178, 25-36. [DOI:10.1016/j.solener.2018.11.060]
2. Ang, A. H.-S., & Tang, W. H. (2007). Probability concepts in engineering: emphasis on applications in civil & environmental engineering (Vol. 1): Wiley New York.
3. Blanc-Brude, F. (2013). Towards Efficient Benchmarks for Infrastructure Equity Investments. A review of the literature on infrastructure equity investment and directions for future research. EDHEC-RISK Institute, janvier.
4. Blanc-Brude, F., & Hasan, M. (2016). A Structural Model of Credit Risk for Illiquid Debt. The Journal of Fixed Income, 26(1), 6-19. [DOI:10.3905/jfi.2016.26.1.006]
5. Blanc-Brude, F., Hasan, M., & Whittaker, T. (2018). Calibrating credit risk dynamics in private infrastructure debt. The Journal of Fixed Income, 27(4), 54-71. [DOI:10.3905/jfi.2018.27.4.054]
6. Borgonovo, E., & Gatti, S. (2013). Risk analysis with contractual default. Does covenant breach matter? European Journal of Operational Research, 230(2), 431-443. [DOI:10.1016/j.ejor.2013.04.047]
7. Capital, L. (2020). LAZARD's Levelized Cost of Energy Analysis Version 12.0 https://www. lazard. com/media/450784/lazards-levelized-cost-of-energy-version-120-vfinal. pdf. Accessed 7th May.
8. DBRS. (2018). Rating Solar Power Projects. Retrieved from http://www.dbrs.com
9. Donovan, C. W. (2015). Renewable energy finance: powering the future: World Scientific Publishing Co. Pte. Ltd. [DOI:10.1142/p1030]
10. Egli, F., Steffen, B., & Schmidt, T. S. (2018). A dynamic analysis of financing conditions for renewable energy technologies. Nature Energy, 3(12), 1084-1092. [DOI:10.1038/s41560-018-0277-y]
11. Garcia-Bernabeu, A., VITORIA, F. M., & Verdú, F. M. (2015). Project finance recent applications and future trends: the state of the art. Paper presented at the International Journal of Business and Economics.
12. Gatti, S. (2013). Project finance in theory and practice: designing, structuring, and financing private and public projects: Academic Press.
13. Gatti, S., Rigamonti, A., Saita, F., & Senati, M. (2007). Measuring Value‐at‐Risk in Project Finance Transactions. European Financial Management, 13(1), 135-158. [DOI:10.1111/j.1468-036X.2006.00288.x]
14. Gholami, A., Khazaee, I., Eslami, S., Zandi, M., & Akrami, E. (2018). Experimental investigation of dust deposition effects on photo-voltaic output performance. Solar Energy, 159, 346-352. [DOI:10.1016/j.solener.2017.11.010]
15. IRENA. (2019). Renewable power generation costs in 2018. International Renewable Energy Agency, Abu Dhabi, UAE.
16. Jadidi, H., Firouzi, A., Rastegar, M. A., & Zandi, M. (2020). Bayesian updating of solar resource data for risk mitigation in project finance. Solar Energy, 207, 1390-1403. [DOI:10.1016/j.solener.2020.07.096]
17. Kleissl, J. (2013). Solar energy forecasting and resource assessment: Academic Press.
18. Litjens, G., Worrell, E., & Van Sark, W. (2018). Economic benefits of combining self-consumption enhancement with frequency restoration reserves provision by photovoltaic-battery systems. Applied Energy, 223, 172-187. [DOI:10.1016/j.apenergy.2018.04.018]
19. Mora, E. B., Spelling, J., van der Weijde, A. H., & Pavageau, E.-M. (2019). The effects of mean wind speed uncertainty on project finance debt sizing for offshore wind farms. Applied Energy, 252, 113419. [DOI:10.1016/j.apenergy.2019.113419]
20. Pacudan, R. (2016a). Financing Solar PV Projects: Energy Production Risk Reduction and Debt Capacity Improvement. Chapters, 297-320.
21. Pacudan, R. (2016b). Implications of applying solar industry best practice resource estimation on project financing. Energy Policy, 95, 489-497. [DOI:10.1016/j.enpol.2016.02.021]
22. Payeras, J. (2015). Utility-Scale Solar Photovoltaic Power Plants. In A Project Developer's Guide.
23. Polo, J., Fernández-Peruchena, C., Salamalikis, V., Mazorra-Aguiar, L., Turpin, M., Martín-Pomares, L., . . . Remund, J. (2020). Benchmarking on improvement and site-adaptation techniques for modeled solar radiation datasets. Solar Energy, 201, 469-479. [DOI:10.1016/j.solener.2020.03.040]
24. Polo, J., Wilbert, S., Ruiz-Arias, J. A., Meyer, R., Gueymard, C., Suri, M., . . . Grant, I. (2016). Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets. Solar Energy, 132, 25-37. [DOI:10.1016/j.solener.2016.03.001]
25. Polzin, F., Egli, F., Steffen, B., & Schmidt, T. S. (2019). How do policies mobilize private finance for renewable energy?-A systematic review with an investor perspective. Applied Energy, 236, 1249-1268. [DOI:10.1016/j.apenergy.2018.11.098]
26. PVsyst. (2020). PVsyst. Retrieved from http://www.pvsyst.com
27. Stackhouse, P., & Whitlock, C. (2009). Surface meteorology and solar energy (SSE) release 6.0 Methodology, NASA SSE 6.0. Earth Science Enterprise Program, National Aeronautic and Space Administration (NASA), Langley, 7(3), 291-313.
28. Steffen, B. (2018). The importance of project finance for renewable energy projects. Energy Economics, 69, 280-294. [DOI:10.1016/j.eneco.2017.11.006]
29. Stoffel, T. (2013). A review of measured/modeled solar resource uncertainty. Paper presented at the Sandia PV Performance Modeling Workshop Getting to PV Performance Model Input Uncertainty Measurements.
30. Thevenard, D., Driesse, A., Pelland, S., Turcotte, D., & Poissant, Y. (2010). Uncertainty in long-term photovoltaic yield predictions: Natural Resources Canada Ottawa, ON, Canada.
31. Thevenard, D., & Pelland, S. (2013). Estimating the uncertainty in long-term photovoltaic yield predictions. Solar Energy, 91, 432-445. [DOI:10.1016/j.solener.2011.05.006]
32. Weber, B., Alfen, H. W., & Staub-Bisang, M. (2016). Infrastructure as an asset class: investment strategy, sustainability, project finance and PPP: John wiley & sons. [DOI:10.1002/9781119226574]
33. Yang, D. (2020). Ensemble model output statistics as a probabilistic site-adaptation tool for satellite-derived and reanalysis solar irradiance. Journal of Renewable and Sustainable Energy, 12(1), 016102. [DOI:10.1063/1.5134731]
34. Ye, L.-C., Rodrigues, J. F., & Lin, H. X. (2017). Analysis of feed-in tariff policies for solar photovoltaic in China 2011-2016. Applied Energy, 203, 496-505. [DOI:10.1016/j.apenergy.2017.06.037]
35. Yun, S., Han, S. H., Kim, H., & Ock, J. H. (2009). Capital structure optimization for build-operate-transfer (BOT) projects using a stochastic and multi-objective approach. Canadian Journal of Civil Engineering, 36(5), 777-790. [DOI:10.1139/L08-134]
36. گاتی، ا، (1397). تأمین مالی پروژه ای در تئوری و عمل، ترجمه¬ی¬ فیروزی، ا، انتشارات فرهنگ صبا.
37. مورالس،خ، مادسن، ه، پینسون، پ، زوگنو، م، (1395). مشارکت منابع تجدیدپذیر در بازار برق، ترجمه¬ی الهیاری، آ، موسسه انتشارات علمی دانشگاه صنعتی شریف.


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jadidi H, Firouzi A, Rastegar M A, Zandi M. A method for uncertainty management of solar power plants in project finance. ieijqp 2022; 11 (2) : 1
URL: http://ieijqp.ir/article-1-870-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 2 (4-2022) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.05 seconds with 40 queries by YEKTAWEB 4645