[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 9, Issue 4 (11-2020) ::
ieijqp 2020, 9(4): 35-49 Back to browse issues page
Resilience-Based Framework for Distributed Generation Planning in Distribution Networks
Reza Saberi1 , Hamid Falaghi * 1, Mostafa Esmaeeli2
1- Birjand University
2- Birjand University of Technology
Abstract:   (3450 Views)
Events with low probability and high impact, which annually cause high damages, seriously threaten the health of the distribution networks. Hence, more attention to the issue of enhancing network resilience and continuity of power supply, feels more than ever, all over the world. In modern distribution networks, because of the increasing presence of distributed generation resources, an alternative way for load supply and enhance network resilience, is use of distributed generation resources during failure occurrence on the main network. In this paper, first, the resilience concept and modeling the natural disasters including flood and storm in the presence of distributed generation resources is presented. Then in order to study the impact of distributed generation resources on resilience of the distribution network, a new index based on resilience for the load supply and resilience of distributed generation sources, including solar cells and conventional gas-fired sources, is formulated, and the resiliency index of the network is achieved in the presence of these resources. Ultimately, using genetic algorithm as a tool for optimization, with the aim of enhancing the network resiliency, we attempt to solve the optimal distributed generation planning problem that means determination the optimal type, site of available capacity of these sources, and the performance of the proposed approach is illustrated by numerical studies on a typical distribution network.
Keywords: Distribution Network, Resilience, Distributed Generation Resources, Genetic Algorithm, Optimal Planning
Full-Text [PDF 1780 kb]   (1339 Downloads)    
Type of Study: Research |
Received: 2019/11/10 | Accepted: 2020/10/13 | Published: 2020/12/2
References
1. [1] Y. Wang, C. Chen, J. Wang and R. Baldick, "Research on resilience of power systems under natural disasters-a review", IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1604-1613, Mar. 2016 [DOI:10.1109/TPWRS.2015.2429656]
2. [2] R. J. Campbell, "Weather-related power outages and electric system resiliency", Congressional Research Service, Library of Congress, 2012.
3. [3] A. Khodaei, "Resiliency-oriented microgrid optimal scheduling", IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1584-1591, July 2014. [DOI:10.1109/TSG.2014.2311465]
4. [4] M. Panteli and P. Mancarella, "Influence of extreme weather and climate change on the resilience of power systems: impacts and possible mitigation strategies", Electric Power Systems Research, vol. 127, pp. 259-270, Oct. 2015. [DOI:10.1016/j.epsr.2015.06.012]
5. [5] H. Gao, Y. Chen, Y. Xu, and C.-C. Liu, "Resilience-oriented critical load restoration using microgrids in distribution systems", IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2837-2848, Nov. 2016. [DOI:10.1109/TSG.2016.2550625]
6. [6] C. Chen, J. Wang, F. Qiu, and D. Zhao, "Resilient distribution system by microgrids formation after natural disasters", IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 958-966, Mar. 2016. [DOI:10.1109/TSG.2015.2429653]
7. [7] A. Yazdaninejadi, A. Hamidi, S. Golshannavaz, F. Aminifar, S. Teimourzadeh, "Impact of Inverter-based DERs Integration on Protection, Control, Operation, and Planning of Electrical Distribution Grids", The Electricity Journal, vol. 32, no. 6, pp. 43-56, 2019. [DOI:10.1016/j.tej.2019.05.016]
8. [8] R. Nateghi, "Multi-Dimensional Infrastructure Resilience Modeling: An Application to Hurricane-Prone Electric Power Distribution Systems", vol. 9, no. 4, pp. 2918 - 2929, July 2018.
9. [9] M. Panteli, D. N. Trakas, P. Mancarella, and N. D. Hatziargyriou, "Boosting the Power Grid Resilience to Extreme Weather Events Using Defensive Islanding", IEEE Trans. Smart Grid, Vol. 7, no. 6, pp. 2913 - 2922, Nov. 2016. [DOI:10.1109/TSG.2016.2535228]
10. [10] P. Bajpai, S. Chanda, K. Srivastava, "A Novel Metric to Quantify and Enable Resilient Distribution System using Graph Theory and Choquet Integral", IEEE Trans. Smart Grid, Vol. 9, no. 4, pp. 2918 - 2929, July 2018. [11] W. Yuan, J. Wang, F. Qiu,C. Chen, C. Kang and B. Zeng, "Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters", IEEE Trans. Smart Grid, Vol. 7 , no. 6 , pp. 2817 - 2826, Nov. 2016. https://doi.org/10.1109/TSG.2015.2513048 [DOI:10.1109/TSG.2016.2623818]
11. [12] S. Ma, B. Chen, Z.Wang, "Resilience Enhancement Strategy for Distribution Systems under Extreme Weather Events", IEEE Trans. Smart Grid, Vol. 9, no. 2, pp. 1442 - 1451, March 2018. [DOI:10.1109/TSG.2016.2591885]
12. [13] J. Kim, Y. Dvorkin, "Enhancing Distribution System Resilience with Mobile Energy Storage and Microgrids", IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 4996-5006, Sept. 2019. [DOI:10.1109/TSG.2018.2872521]
13. [14] M. Bahramabadi, A. Abbaspour, M. Fotuhi, M. Aghtaie, "Resilience-based framework for switch placement problem in power distribution", IET Gener. Transm. Distrib. Vol. 12 no. 5, pp. 1223-1230, 2018. [DOI:10.1049/iet-gtd.2017.0970]
14. [15] B. Zhang, P. Dehghanian and M. Kezunovic, "Optimal Allocation of PV Generation and Battery Storage for Enhanced Resilience", IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 535-545, Jan. 2019. [DOI:10.1109/TSG.2017.2747136]
15. [16] S. Wang, Z. Li, L.Wu, M.Shahidehpour and Z. Li, " New metrics for assessing the reliability and economics of microgrids in distribution systems", IEEE Trans.Power Syst., vol. 28, no. 3, pp. 28522861, Aug. 2013. [DOI:10.1109/TPWRS.2013.2249539]
16. [17] H. Falaghi, C. Singh, M.-R. Haghifam, M. Ramezani, "DG integrated multistage distribution system expansion planning", Electrical Power and Energy Systems, vol. 33, pp. 1489-1497, 2011. [DOI:10.1016/j.ijepes.2011.06.031]
17. [18] Zhaoyu Wang, Bokan Chen, Jianhui Wang, "Robust optimization based optimal DG placement in microgrids", IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2173-2182, Sept. 2014 [DOI:10.1109/TSG.2014.2321748]
18. [19] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, "Microgrids", IEEE Power and Energy Magazine, vol. 5, no. 4, pp. 78-94, 2007. [DOI:10.1109/MPAE.2007.376583]
19. [20] M. Al-Muhaini, Gerald T. Heydt, "Evaluating future power distribution system reliability including distributed generation", IEEE Transactions on Power Delivery, vol. 28, no. 4, pp. 2264-2272, 2013. [DOI:10.1109/TPWRD.2013.2253808]
20. [21] W. Caisheng and M. Hashem Nehrir, "Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System", IEEE Trans. on Energy Conversion, vol. 23, no. 3, pp. 957-967, Sept. 2008. [DOI:10.1109/TEC.2007.914200]
21. [22] Mohammad saad Alam and David, "Modeling and Analysis of a Wind/PV/Fuel Cell Hybrid Power System in HOMER", Proc. Int. Conf. on Industrial Electronics and Applications, PP.1594-1599, 2007.
22. [23] M. Rahman, M. Hasanuzzaman and N.A. Rahim, "Effects of Various Parameters on PV-Module Power and Efficiency", Energy Conversion and Management, Vol. 103, pp. 348-358, 2015. [24] D. Torres-Lobera, and S. Valkealahti, "Inclusive Dynamic Thermal and Electric Simulation Model of Solar PV Systems under Varying Atmospheric Conditions", Solar Energy, 105, pp. 632-647, 2014. https://doi.org/10.1016/j.solener.2014.04.018 [DOI:10.1016/j.enconman.2015.06.067]
23. [25] Energy Nexus Group, "Technology characterization-microturbine", USA Environmental Protection Agency, 2002.
24. [26] V. Camargo, M. Lavorato, R. Romero, "Specialized genetic algorithm to solve the electrical distribution system expansion planning", IEEE Power and Energy Society General Meeting (PES), pp. 1-5, 2013. [DOI:10.1109/PESMG.2013.6672615]
25. [27] D.T.C. Wang, L.F. Ochoa, G.P. Harrison, "Modified GA and data envelopment analysis for multistage distribution network expansion planning under uncertainty", IEEE Transactions on Power Systems, vol.26, no.2, pp.897-904, 2011. [DOI:10.1109/TPWRS.2010.2057457]
26. [28] E. Carrano, L. Soares, R. Takahashi, R. Saldanha and O. Neto, "Electric distribution network multiobjective design using a problem-specific genetic algorithm", IEEE Transactions on Power Delivery, vol. 21, no. 2, pp. 995-1005, April 2006. [DOI:10.1109/TPWRD.2005.858779]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saberi R, Falaghi H, Esmaeeli M. Resilience-Based Framework for Distributed Generation Planning in Distribution Networks. ieijqp 2020; 9 (4) :35-49
URL: http://ieijqp.ir/article-1-687-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 4 (11-2020) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 40 queries by YEKTAWEB 4645