:: دوره 8، شماره 2 - ( 9-1398 ) ::
جلد 8 شماره 2 صفحات 10-1 برگشت به فهرست نسخه ها
تعیین محل نصب و ظرفیت منابع توزیع پراکنده جهت برنامه‌ریزی بهینه ریزشبکه با در نظرگیری عدم قطعیت
امین فروغی نعمت اللهی1 ، حامد نفیسی* 1، بهروز وجیدی1 ، سیدامیر حسینی2
1- دانشکده مهندسی برق- دانشگاه صنعتی امیرکبیر
2- گروه مهندسی برق- دانشکده فنی و مهندسی گلپایگان
چکیده:   (3396 مشاهده)
در این مقاله یک ریزشبکه شامل پنل خورشیدی، سیستم ذخیره‌ساز انرژی الکتریکی و یک دیزل ژنراتور به عنوان منبع پشتیبان بصورت بهینه طراحی و مکان‌یابی می‌شود. ریزشبکه مورد بحث قسمتی از یک شبکه توزیع است که می‌تواند به عنوان یک محله تلقی شود. هدف ابتدایی طراحی این ریزشبکه، تأمین بار بدون دریافت توان از شبکه بالادست است. به عبارت دیگر تمام توان بار این شبکه کوچک باید از طریق منابع موجود و سیستم ذخیره‌ساز تأمین گردد. اما چنانچه اضافه تولید وجود داشته باشد، این توان می‌تواند به شبکه فروخته شود. بنابراین هدف اصلی طراحی ریزشبکه تأمین بار آن توسط منابع موجود با حداقل کردن هزینه این منابع می‌باشد. نظر به اینکه اضافه تولید ریزشبکه مورد نظر به شبکه فروخته می‌شود. بنابراین مسئله مورد نظر در این مقاله طراحی بهینه و جایابی بهینه همزمان ریزشبکه در یک شبکه توزیع به منظور کاهش هزینه تأمین توان ریزشبکه و کاهش تلفات شبکه توزیع می‌باشد. برای حل بهینه‌سازی مورد نظر از روش LAPO و ABC استفاده شده است و نتایج آن‌ها مقایسه می‌شود. نتایج برتری روش LAPO نسبت به روش ABC را چه از لحاظ سرعت همگرایی و رسیدن به جواب بهینه و چه از لحاظ دقت در یافتن بهترین نتیجه نشان می­دهد.
واژه‌های کلیدی: ریزشبکه، بهینه‌سازی، LAPO، پنل خورشیدی، عدم قطعیت
متن کامل [PDF 1289 kb]   (701 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1398/2/24 | پذیرش: 1398/5/6 | انتشار: 1398/9/6
فهرست منابع
1. [1] Z. Wang, B. Chen, J. Wang, J. Kim, and M. M. Begovic, "Robust optimization based optimal DG placement in microgrids," IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2173-2182, 2014. [DOI:10.1109/TSG.2014.2321748]
2. [2] S. Kansal, V. Kumar, and B. Tyagi, "Optimal placement of different type of DG sources in distribution networks," International Journal of Electrical Power & Energy Systems, vol. 53, pp. 752-760, 2013. [DOI:10.1016/j.ijepes.2013.05.040]
3. [3] Z. Song, H. Hofmann, J. Li, J. Hou, X. Han, and M. Ouyang, "Energy management strategies comparison for electric vehicles with hybrid energy storage system," Applied Energy, vol. 134, pp. 321-331, 2014. [DOI:10.1016/j.apenergy.2014.08.035]
4. [4] A. Hajizadeh and E. Hajizadeh, "PSO-based planning of distribution systems with distributed generations," International Journal of Electrical and Electronics Engineering, vol. 2, no. 1, pp. 33-38, 2008.
5. [5] 2003. IEEE Std. 1547, "IEEE standard for interconnecting distributed resources with electric power system," "No Title." .
6. [6] A. Rahiminejad, A. Aranizadeh, and B. Vahidi, "Simultaneous distributed generation and capacitor placement and sizing in radial distribution system considering reactive power market," Journal of Renewable and Sustainable Energy, vol. 6, no. 4, p. 43124, 2014. [DOI:10.1063/1.4893431]
7. [7] P. Kayal and C. K. Chanda, "Placement of wind and solar based DGs in distribution system for power loss minimization and voltage stability improvement," International Journal of Electrical Power & Energy Systems, vol. 53, pp. 795-809, 2013. [DOI:10.1016/j.ijepes.2013.05.047]
8. [8] A. Ameli, S. Bahrami, F. Khazaeli, and M.-R. Haghifam, "A multiobjective particle swarm optimization for sizing and placement of DGs from DG owner's and distribution company's viewpoints," IEEE Transactions on Power Delivery, vol. 29, no. 4, pp. 1831-1840, 2014. [DOI:10.1109/TPWRD.2014.2300845]
9. [9] A. Forooghi Nematollahi, A. Dadkhah, O. Asgari Gashteroodkhani, and B. Vahidi, "Optimal sizing and siting of DGs for loss reduction using an iterative-analytical method," Journal of Renewable and Sustainable Energy, vol. 8, no. 5, p. 55301, 2016. [DOI:10.1063/1.4966230]
10. [10] A. Foroughi Nematollahi, A. Rahiminejad, B. Vahidi, H. Askarian, and A. Safaei, "A new evolutionary-analytical two-step optimization method for optimal wind turbine allocation considering maximum capacity," Journal of Renewable and Sustainable Energy, vol. 10, no. 4, p. 43312, 2018. [DOI:10.1063/1.5043403]
11. [11] N. Khalesi, N. Rezaei, and M.-R. Haghifam, "DG allocation with application of dynamic programming for loss reduction and reliability improvement," International Journal of Electrical Power & Energy Systems, vol. 33, no. 2, pp. 288-295, 2011. [DOI:10.1016/j.ijepes.2010.08.024]
12. [12] M. M. Aman, G. B. Jasmon, A. H. A. Bakar, and H. Mokhlis, "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, vol. 66, pp. 202-215, 2014. [DOI:10.1016/j.energy.2013.12.037]
13. [13] V. Hengsritawat, T. Tayjasanant, and N. Nimpitiwan, "Optimal sizing of photovoltaic distributed generators in a distribution system with consideration of solar radiation and harmonic distortion," International Journal of Electrical Power & Energy Systems, vol. 39, no. 1, pp. 36-47, 2012. [DOI:10.1016/j.ijepes.2012.01.002]
14. [14] V. Carpentiero, R. Langella, and A. Testa, "Hybrid wind-diesel stand-alone system sizing accounting for component expected life and fuel price uncertainty," Electric Power Systems Research, vol. 88, pp. 69-77, 2012. [DOI:10.1016/j.epsr.2012.02.003]
15. [15] S. M. Hakimi and S. M. Moghaddas-Tafreshi, "Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran," Renewable energy, vol. 34, no. 7, pp. 1855-1862, 2009. [DOI:10.1016/j.renene.2008.11.022]
16. [16] T. Ma, H. Yang, and L. Lu, "A feasibility study of a stand-alone hybrid solar-wind-battery system for a remote island," Applied Energy, vol. 121, pp. 149-158, 2014. [DOI:10.1016/j.apenergy.2014.01.090]
17. [17] M. Sedghi, M. Aliakbar-Golkar, and M.-R. Haghifam, "Optimal reliable distribution network expansion planning using improved PSO algorithm," 2012. [DOI:10.1049/cp.2012.0748]
18. [18] P. Karimyan, G. B. Gharehpetian, M. Abedi, and A. Gavili, "Long term scheduling for optimal allocation and sizing of DG unit considering load variations and DG type," International Journal of Electrical Power & Energy Systems, vol. 54, pp. 277-287, 2014. [DOI:10.1016/j.ijepes.2013.07.016]
19. [19] R. A. Walling, R. Saint, R. C. Dugan, J. Burke, and L. A. Kojovic, "Summary of distributed resources impact on power delivery systems," IEEE Transactions on power delivery, vol. 23, no. 3, pp. 1636-1644, 2008. [DOI:10.1109/TPWRD.2007.909115]
20. [20] A. El-Zonkoly, "Optimal placement and schedule of multiple grid connected hybrid energy systems," International Journal of Electrical Power & Energy Systems, vol. 61, pp. 239-247, 2014. [DOI:10.1016/j.ijepes.2014.03.040]
21. [21] D. B. Nelson, M. H. Nehrir, and C. Wang, "Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems," Renewable energy, vol. 31, no. 10, pp. 1641-1656, 2006. [DOI:10.1016/j.renene.2005.08.031]
22. [22] Y. Wang, B. Wang, C.-C. Chu, H. Pota, and R. Gadh, "Energy management for a commercial building microgrid with stationary and mobile battery storage," Energy and Buildings, vol. 116, pp. 141-150, 2016. [DOI:10.1016/j.enbuild.2015.12.055]
23. [23] M. A. M. Ramli, H. Bouchekara, and A. S. Alghamdi, "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, vol. 121, pp. 400-411, 2018. [DOI:10.1016/j.renene.2018.01.058]
24. [24] A. F. Nematollahi, A. Rahiminejad, and B. Vahidi, "A novel multi-objective optimization algorithm based on Lightning Attachment Procedure Optimization algorithm," Applied Soft Computing, vol. 75, pp. 404-427, 2019. [DOI:10.1016/j.asoc.2018.11.032]
25. [25] A. F. Nematollahi, A. Rahiminejad, and B. Vahidi, "A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization," Applied Soft Computing, 2017. [DOI:10.1016/j.asoc.2017.06.033]
26. [26] J. Wang, A. Botterud, R. Bessa, H. Keko, L. Carvalho, D. Issicaba, J. Sumaili, and V. Miranda, "Wind power forecasting uncertainty and unit commitment," Applied Energy, vol. 88, no. 11, pp. 4014-4023, 2011. [DOI:10.1016/j.apenergy.2011.04.011]
27. [27] M. Hamzeh, B. Vahidi, and A. F. Nematollahi, "Optimizing Configuration of Cyber Network Considering Graph Theory Structure and Teaching-Learning-Based Optimization (GT-TLBO)," IEEE Transactions on Industrial Informatics, 2018. [DOI:10.1109/TII.2018.2860984]
28. [28] H. Nafisi, S. M. M. Agah, H. A. Abyaneh, and M. Abedi, "Two-stage optimization method for energy loss minimization in microgrid based on smart power management scheme of PHEVs," IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1268-1276, 2016. [DOI:10.1109/TSG.2015.2480999]


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 8، شماره 2 - ( 9-1398 ) برگشت به فهرست نسخه ها