:: دوره 8، شماره 1 - ( 6-1398 ) ::
جلد 8 شماره 1 صفحات 40-30 برگشت به فهرست نسخه ها
بررسی تأثیر روش های سنکرون سازی بر پایداری سیستم‌های فتوولتائیک متصل به شبکه
سعید جلالی عاشق آبادی1 ، عباس کتابی* 1
1- دانشکده مهندسی برق و کامپیوتر- دانشگاه کاشان- کاشان- ایران
چکیده:   (3678 مشاهده)
چکیده: با توجه به استفاده روزافزون از ریزشبکه­ها، بررسی پایداری آنها از اهمیت ویژه­ای برخوردار است. یکی از معایب منابع تولید پراکنده مبتنی بر اینورتر نسبت به ژنراتور سنکرون این است که برای اتصال به شبکه، نیاز به داشتن اطلاعات فرکانس و فاز در نقطه اتصال به شبکه در هر لحظه می­باشد که این کار با استفاده از روش­های سنکرون­سازی انجام می­شود. در این مقاله به بررسی تأثیر روش­های مختلف سنکرون­سازی شامل روش­های SRF-PLL، اینرسی مجازی و K ثابت بر پایداری اینورترهای متصل به شبکه پرداخته شده است. با توجه به اینکه عواملی نظیر هارمونیک­ها، توالی منفی ولتاژ شبکه، افزایش امپدانس شبکه، تغییرات فرکانس شبکه و تغییرات شدت تابش خورشید از دلایل ناپایداری هستند، یک سناریو کلی شامل این عوامل برای تعیین کمترین مقدار خازن لینک DC با حفظ پایداری سیستم در هر یک از روش­های سنکرون­سازی تعریف شده است. تعیین کمترین مقدار خازن لینک DC برای حفظ پایداری سیستم بصورت یک مسئله بهینه­سازی تعریف شده که با استفاده از الگوریتم بهینه­سازی ازدحام ذرات حل شده  و پایداری سیستم با آنالیز مقادیر ویژه بررسی شده است.
 
واژه‌های کلیدی: پایداری ریز شبکه، روش‌های سنکرون سازی، روش SRF-PLL، روش K ثابت، روش اینرسی مجازی، مقادیر ویژه.
متن کامل [PDF 1617 kb]   (948 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1397/10/29 | پذیرش: 1398/4/10 | انتشار: 1398/6/6
فهرست منابع
1. [1] Xu, Q., Hu, X., Wang, P., Xiao, J., Tu, P., Wen, Ch., and Lee, M. Y., "A Decentralized Dynamic Power Sharing Strategy for Hybrid Energy Storage System in Autonomous DC Microgrig", IEEE Trans. Industrial Electronics, vol. 64, no. 7, pp. 5930-5941, August 2016. [DOI:10.1109/TIE.2016.2608880]
2. [2] Johnson, B. B., Dhople, S. V., Cale, J. L., Hamadeh, A. O., and Krein, Ph. T., "Oscillator-Based Inverter Control for Islanded Three Phase Microgrids", IEEE Journal of Photovoltaics, vol. 4, no. 1, pp. 387-395, Junuary 2014. [DOI:10.1109/JPHOTOV.2013.2280953]
3. [3] Golpîra, H., Seifi, H., and Haghifam, M. R., "Dynamic Equivalencing of an Active Distribution Network for Large-scale Power System Frequency Stability Studies", IET Generation. Transmission & Distribution, vol. 9, no. 15, pp. 2245-2254, July 2015. [DOI:10.1049/iet-gtd.2015.0484]
4. [4] Kawabe, K., Ota, Y., Yokoyama, A., and Tanaka, K., "Novel Dynamic Voltage Support Capability of Photovoltaic Systems for Improvement of Short-term Voltage Stability in Power Systems", IEEE Trans. Power Systems, vol. 32, no. 3, pp. 1796-1804, July 2016. [DOI:10.1109/TPWRS.2016.2592970]
5. [5] Ding, K., Liu, J., Wang, Xu., Zhang, X., and Wang, N., "Research of an Active and Reactive Power Coordinated Control Method for Photovoltaic Inverters to Improve Power System Transient Stability", in China International Conference on Electricity Distribution (CICED), pp. 1-5, August 2016. [DOI:10.1109/CICED.2016.7576223]
6. [6] Kawabe, K., and Tanaka, K., "Impact of Dynamic Behavior of Photovoltaic Power Generation Systems on Short-term Voltage Stability", IEEE Trans. Power Systems, vol. 30, no. 6, pp. 3416-3424, November 2015. [DOI:10.1109/TPWRS.2015.2390649]
7. [7] Yan, R., and Saha, T. K., "Investigation of Voltage Stability for Residential Customers Due to High Photovoltaic Penetrations", IEEE Trans. Power Systems., vol. 27, no. 2, pp. 651-662, May 2012. [DOI:10.1109/TPWRS.2011.2180741]
8. [8] Moursi, M. S. E., Zeineldin, H. H., Kirtley, J. L., and Alobeidli, Kh., "A Dynamic Master/Slave Reactive Power-Management Scheme for Smart Grids with Distributed Generation", IEEE Trans. Power Delivery., vol. 29, no. 3, pp. 1157-1167, June 2014. [DOI:10.1109/TPWRD.2013.2294793]
9. [9] Varma, R. K., Rahman, S. A., and Vanderheide, T., "New control of PV solar farm as STATCOM (PV-STATCOM) for Increasing Grid Power Transmission Limits During Night and Day", IEEE Trans. Power Delivery, vol. 30, no. 2, pp. 755-763, April 2015. [DOI:10.1109/TPWRD.2014.2375216]
10. [10] Tafti, H. D. , Maswood, A. I., Lim, Z., Ooi, G. H. P., and Raj, P. H., "A Review of Active/Reactive Power Control Strategies for PV Power Plants Under Unbalanced Grid Faults", in IEEE Innovative. Smart Grid Technologies - Asia (ISGT ASIA), pp. 3-6, November 2015.
11. [11] Yagami, M., Kimura, N., Tsuchimoto, M., and Tamura, J., "Power System Transient Stability Analysis in The Case of High-Penetration Photovoltaics", in IEEE Grenoble Conference. France, pp. 1-6, June 2013. [DOI:10.1109/PTC.2013.6652139]
12. [12] Eftekharnejad, S., Vittal, V., Heydt, G. T., Keel, B., and Loehr, J., "Impact of Increased Penetration of Photovoltaic Generation on Power Systems", IEEE Trans. Power Systems, vol. 28, no. 2, pp. 893-901, May 2013. [DOI:10.1109/TPWRS.2012.2216294]
13. [13] Xyngi, I., Ishchenko, A., Popov, M., and Sluis, L., "Transient Stability Analysis of a Distribution Network With Distributed Generators", IEEE Trans. Power Systems, vol. 24, no. 2, pp. 1102-1104, May 2009. [DOI:10.1109/TPWRS.2008.2012280]
14. [14] Slootweg, J. G., and Kling, W. L., "Impacts of Distributed Generation on Power System Transient Stability", in IEEE Power Engineering Society Summer Meeting, vol. 2, pp. 862-867, July 2002.
15. [15] Liu, Sh., Liu, P. X., and Wang, X., "Stochastic Small-Signal Stability Analysis of Grid-Connected Photovoltaic Systems", IEEE Trans. Industrial Electronics, vol. 63, no. 2, pp. 1027-1038, August 2015. [DOI:10.1109/TIE.2015.2481359]
16. [16] Du, W., Wang, H., and Xiao, L. Y., "Power System Small-Signal Stability as Affected by Grid-Connected Photovoltaic Generation", European Trans. Electrical Power, vol. 22, no. 5 pp. 688-703, July 2012. [DOI:10.1002/etep.598]
17. [17] Zhang, Q., Zhou, L., Mao, M., Xie, B., and Zheng, Ch., "Power quality and stability analysis of large-scale grid-connected photovoltaic system considering non-linear effects", IET. Power Electronics, vol. 11, no. 11, pp. 1739-1747, August 2018. [DOI:10.1049/iet-pel.2018.0063]
18. [18] Yazdani, A., and Dash, P. P., "A Control Methodology and Characterization of Dynamics for a Photovoltaic (PV) System Interfaced with a Distribution Network", IEEE Trans. Power Delivery, vol. 24, no. 3, pp. 1538-1551, July 2009. [DOI:10.1109/TPWRD.2009.2016632]
19. [19] Dash, P. P., and Kazerani, M., "Dynamic Modeling and Performance Analysis of a Grid-Connected Current-Source Inverter-Based Photovoltaic System", IEEE Trans. Sustainable Energy, vol. 2, no. 4, pp. 443-450, October 2011. [DOI:10.1109/TSTE.2011.2149551]
20. [20] Huang, Y., Zhai, X., Hu, J., Liu, D., and Lin, Ch., "Modeling and Stability Analysis of VSC Internal Voltage in DC-Link Voltage Control Timescale", IEEE Journal of Emerging and Selected Topics. Power Electronics, vol. 6, no. 1, pp. 16-28, March 2018. [DOI:10.1109/JESTPE.2017.2715224]
21. [21] Cvetkovic, I., Boroyevivh, D., Burgos, R., Li, Ch., and Mattavelli, P., "Modeling and Control of Grid-Connected Voltage-Source Converters Emulating Isotropic and Anisotropic Synchronous Machines", in IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1-5, July 2015. [DOI:10.1109/COMPEL.2015.7236454]
22. [22] Cvetkovic, I., Boroyevich, D., Burgos, R., Chi, L., Jaksic, M., and Mattavelli, P., "Modeling of a Virtual Synchronous Machine-Based Grid Interface Converter for Renewable Energy Systems Integration" in IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1-7, June 2014. [DOI:10.1109/COMPEL.2014.6877195]
23. [23] Loukriz, A., Haddadi, M., and Messalti, S., "Simulation and Experimental Design of a New Advanced Variable Step Size Incremental Conductance MPPT Algorithm for PV Systems", ISA Transactions, vol. 62, pp. 30-38, May 2016. [DOI:10.1016/j.isatra.2015.08.006]
24. [24] Yazdani, A., and Iravani, R., "An Accurate Model for the DC-side Voltage Control of the Neutral Point Diode Clammed Converter", IEEE Trans. Power Delivery, vol. 21, no. 1, pp. 185-193, January 2006. [DOI:10.1109/TPWRD.2005.852342]
25. [25] Ye, Y., Kazerani, M., and Quintana, V. H., "Modeling, Control and Implementation of Three-Phase PWM Converters", IEEE Trans. Power Electronics, vol. 18, no. 3, pp. 857-864, May 2003. [DOI:10.1109/TPEL.2003.810860]
26. [26] Agarwal, R. H., Hussain, I., and Singh, B., "Three-Phase Single-Stage Grid Tied Solar PV Energy Conversion System Using PLL-less Fast Control Techniqye", IET. Power Electronices, vol. 10, no. 2, pp. 178-188, February 2017. [DOI:10.1049/iet-pel.2016.0067]
27. [27] Joan, J.,and Sekar, R. M., "Improved Enhanced Version of solar Photo Votaic System", International Journal of Engineering and Applied Sciences (IJEAS), vol. 4, no. 4, pp. 23-27, April 2017.
28. [28] Singh, B., J, Ch., and Goel, S., "ILST Control Algorithm of Single-Stage Dual Purpose Grid Connected Solar PV System", IEEE Trans. Power Electronics, vol. 29, n0. 10, pp. 5347-5357, October 2014. [DOI:10.1109/TPEL.2013.2293656]
29. [29] Golestan, S., and Guerrero, J. M., "Conventional Synchronous Reference Frame Phase-Locked Loop Is an Adaptive Complex Filter", IEEE Trans. Industrial Electronics, vol, 62, no. 3, pp. 1679-1682, March 2015. [DOI:10.1109/TIE.2014.2341594]
30. [30] Rodriguez, P., Pou, J., Bergas, J., Candela, J. I., Burgos, R. P., and Boroyevich, D., "Decoupled Double Synchronous Reference Frame PLL for Power Converters Control", IEEE Trans. Power Electronics, vol. 22, no. 2, pp. 584-592, March 2007. [DOI:10.1109/TPEL.2006.890000]


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 8، شماره 1 - ( 6-1398 ) برگشت به فهرست نسخه ها