تشخیص خطأ با استفاده از توالی مثبت، منفی و صفر جریان و ولتاژ نقاط مختلف ریزشیک‌ها با در نظر گرفتن عدم قطعیت در توبولوژی ریزشیکه

چکیده: در این مقاله، روش جدیدی برای تشخیص خطأ در ریزشیکه‌ها با در نظر گرفتن عدم قطعیت در توبولوژی آن‌ها پیشنهاد می‌شود. روش پیشنهادی با استفاده از تبدیل‌های موجک و S تحقیق می‌یابد. با استفاده از این تبدیل‌ها و وزیگرهای مولفه‌های سه‌فاز و همچنین توالی‌های منفی و صفر موج‌های جریان و ولتاژ در نقاط مختلف شبكه که در تشخیص وقوع خطأ محل خطا، نوع خطأ و فاز‌های درگیر موثر هستند، استخراج می‌شوند. به دلیل آنکه روش تشخیص خطأ در روش پیشنهادی مستقل از توبولوژی ریزشیکه می‌باشد، لذا وزیگر بارز آن، قابلیت تشخیص در انواع مختلف حالات دینامیکی پیش آمده در ریزشیکه می‌باشد. برای بررسی میزان کارایی روش پیشنهادی، این روش به روش‌های قبلی ریزشیکه نمونه اعمال گردیده است. نتایج حاصل از شبیه‌سازی نشان می‌دهد که روش تشخیص خطای پیشنهادی به‌خوبی قابلیت تشخیص و تمیز خطاها و ماندگار رخ داده از اغتشاشات ویژه‌ای ایجاد شده در ریزشیکها را داراست. همچنین مقایسه تبدیل S و موجک در فرآیند تشخیص خطأ در ریزشیکه نشان می‌دهد که اگرچه با استفاده از تبدیل موجک، سرعت نسبی به تصمیم‌گیری بسیاری است، اما دقت تبدیل S بیشتر در ایجاد تمایز بین حالات گذرا و خطاها دائم و وزیگر بی‌ربط این تبدیل است.

واژه های کلیدی: تشخیص خطأ - توالی‌های مثبت - منفی و صفر - تبدیل موجک - تبدیل S - انرژی سیگنال

پنجمین برنامه نویسی مسئول: سیدحسین حسام‌الدین صادقی
نام و رتبه‌های مسئول: دانشگاه مهندسی برق - دانشگاه صنعتی امیرکبیر - تهران - ایران

Downloaded from ieijqp.ir at 20:52 +0430 on Sunday April 7th 2019
به‌عنوان یکی از روش‌های تشخیص این منطقه در پیوسته‌های جیوپولیتیک تحویل می‌شود. با انجام تحقیقات در این زمینه می‌توان به دست آورده‌ها بیان کرد که این روش‌ها می‌توانند به شکل فنی بازاران را در شرایط جدیدی تحلیل نمایند. غیر از اینکه این روش‌ها می‌توانند به دست آورده‌ها بیان کنند که این روش‌ها می‌توانند به شکل فنی بازاران را در شرایط جدیدی تحلیل نمایند. غیر از اینکه این روش‌ها می‌توانند به دست آورده‌ها بیان کنند که این روش‌ها می‌توانند به شکل فنی بازاران را در شرایط جدیدی تحلیل نمایند. غیر از اینکه این روش‌ها می‌توانند به دست آورده‌ها بیان کنند که این روش‌ها می‌توانند به شکل فنی بازاران را در شرایط جدیدی تحلیل نمایند.

1. مقدمه

2. شرح مشکل

3. راستگیری

4. نتایج نهایی
تشخیص خطا با استفاده از توالی مثبت، منفی و صفر جریان و ولتاژ نقاط مختلف ریزشکه‌ها با نظر گرفتن عدم قطعیت در تپولوژی ریزشکه

المولی به طور مداوم از سیگنال‌های ولتاژ و جریان نمونه‌برداری نموده و از طریق الگوها پیشنهاد شده در این مقاله تشخیص و قواعد خطای م محل خطای نوی و فاصله‌ای در گری در آن می‌بردازند. لازم به ذکر است با استفاده از انحرافات دقت در تشخیص خطای استفاده از انحرافات مابین و انرژی سیگنال حالت شده از طریق این توالی مثبت، منفی و صفر جریان منفی و مثبت و همچنین منفی‌های سیگنال ولتاژ و جریان، راهکار پیشنهادی این مقاله برای تشخیص و قواعد خطای محل خطای نوی و فاصله‌ای در گری در آن می‌باشد.

۳-۱-الانالیزهای پیشنهاد شده برای تشخیص خطاهای روش برای پیشنهاد این مقاله بنا بر قطع، سایر الگوهای محدوده و علت نقاط مختلف وجود در شیک، بزرگ تغییرات استرسور این می‌باشد. این تغییرات شکل موجه جریان ولتاژ نقاط مختلف شیک به تغییرات را تغییر داده و این اتفاق تشخیص خطاهای احتمالی را دیگر جانشینی را دارا یا دچار جانشینی با یکدیگر در ساختار موجه و این نمودار سیگنال‌های بازی‌گویی در برلیس سیگنال‌های ولتاژ و جریان هستند.

۳-۲-روش جدید

شکل (۳): بست مرور نیاز برای پیام‌سازی روش پیشنهادی در این مقاله را می‌توان تشخیص خطای در ریزشکه‌ها (شکل (۱)) مشخص است. مرحله اول طراحی خروجی‌های M مکانیکی با یک سر مرکزی ارتباط دارد. لازم به ذکر است که این روش پیشنهادی را می‌توان به صورت غیرمنجری و بدون استفاده از سر مرکزی نیز پیام‌سازی کرد. کافی است که تصمیمات که در سر مرکزی اخراج می‌شوند را بازی‌گویی می‌کند و یا روش پیشنهادی به وسیله ارتباط مخابراتی که باهم دارند، تصمیمات‌های از را گیرند.

شکل (۱): روش پیشنهادی
3-1-1- تبدیل موجک

تبدیل موجک ارائه شده در جنگلی زولوشن است و برای تحلیل
سیگنال‌های موجک سه سیر مناسب است.[17] تبدیل موجک می‌تواند در استخراج سیگنال‌های ناخودرو و اجزای
فرکانسی آگاهی کننده محل موجک و جدایی دند. برای
سابقه از اطلاعات خطا در مولفه‌های جدایی و جدایی، برای
می‌توان از آن برای تعیین خطا با حالات غیر مرحله در شبکه با
سیستم تقدیر استفاده نمود. همچنین، از این مدل‌ها برای

آنتی‌اژ آن خطا استفاده نمود.[18]

سیگنال‌های آگاهی کننده محل موجک و جدایی دند. برای
نحوه تشخیص همکاری از سیگنال‌های موجک در مولفه‌های جدایی و جدایی، می‌توان از آن برای تعیین خطا با
در شبکه با سیستم تقدیر استفاده نمود. همچنین، از این مدل‌ها برای تبدیل موجک استفاده نمود.

[A]: آنتی‌اژ آن خطا استفاده نمود.

باید توجه به اینکه به شکل قبلا و در نظر گرفته در آن خواهد بود.

[A]: آنتی‌اژ آن خطا استفاده نمود.

باید توجه به اینکه به شکل قبلا و در نظر گرفته در آن خواهد بود.

[A]: آنتی‌اژ آن خطا استفاده نمود.

باید توجه به اینکه به شکل قبلا و در نظر گرفته در آن خواهد بود.

[A]: آنتی‌اژ آن خطا استفاده نمود.

باید توجه به اینکه به شکل قبلا و در نظر گرفته در آن خواهد بود.

[A]: آنتی‌اژ آن خطا استفاده نمود.

باید توجه به اینکه به شکل قبلا و در نظر گرفته در آن خواهد بود.
تشخیص خطا با استفاده از توالی میت، منفی و صفر جریان و ولتاژ نقطه مختلف ریزشکه‌ها با در نظر گرفتن عدم قطعیت در تولید وریزشکه

که در این سیگنال مورد نظر به تعداد N می‌باشد.

$S_{m,q}[T, \frac{n}{NT}] = \sum_{k=1}^{\infty} u_q^m(t_k) \exp(-j2\pi kn) \frac{T}{N}$

(9)

در ادامه ماتریس ارزوی، حاصل اعمال تبدیل سیگنال $S_{m,q}$ به سیگنال S_m باشد:

$E_{m,n}^{u,q} = \frac{N}{T} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2 \frac{\gamma^2}{NT}$

(10)

و افزایش متریس سیگنال، $STD_{m,n}^{u,q}$ به میزان مشابه m:

$STD_{m,n}^{u,q} = \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \left| S_{m,q}(t_k, t_l) \right|^2 - \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2}{NT} \right)^2}{NT} \right)^{\frac{1}{2}}$

(11)

$S_{m,q}[T, \frac{n}{NT}] = \sum_{k=1}^{\infty} u_q^m(t_k) \exp(-j2\pi kn) \frac{T}{N}$

(8)

$u = i, v$ و $q = Seq_0, Seq_1, Seq_2, a, b, c$.

در ادامه ماتریس ارزوی، $E_{m,n}^{u,q}$ به صورت زیر از حاصل جمع درایه‌های ماتریس ارزوی به دست می‌آید:

برای محاسبه میزان

برای این مقدار، $STD_{m,n}^{u,q}$ از رابطه زیر محاسبه می‌شود:

$STD_{m,q}^{u,q} = \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \left| S_{m,q}(t_k, t_l) \right|^2 - \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2}{NT} \right)^2}{NT} \right)^{\frac{1}{2}}$

(11)

$E_{m,q}^{u,q} = \frac{N}{T} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2 \frac{\gamma^2}{NT}$

(10)

و افزایش متریس ارزوی، $STD_{m,n}^{u,q}$ به میزان مشابه m:

$STD_{m,n}^{u,q} = \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \left| S_{m,q}(t_k, t_l) \right|^2 - \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2}{NT} \right)^2}{NT} \right)^{\frac{1}{2}}$

(11)

$E_{m,n}^{u,q} = \frac{N}{T} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2 \frac{\gamma^2}{NT}$

(10)

و افزایش متریس ارزوی، $STD_{m,n}^{u,q}$ به میزان مشابه m:

$STD_{m,n}^{u,q} = \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \left| S_{m,q}(t_k, t_l) \right|^2 - \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2}{NT} \right)^2}{NT} \right)^{\frac{1}{2}}$

(11)

$E_{m,n}^{u,q} = \frac{N}{T} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2 \frac{\gamma^2}{NT}$

(10)

و افزایش متریس ارزوی، $STD_{m,n}^{u,q}$ به میزان مشابه m:

$STD_{m,n}^{u,q} = \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \left| S_{m,q}(t_k, t_l) \right|^2 - \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2}{NT} \right)^2}{NT} \right)^{\frac{1}{2}}$

(11)

$E_{m,n}^{u,q} = \frac{N}{T} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2 \frac{\gamma^2}{NT}$

(10)

و افزایش متریس ارزوی، $STD_{m,n}^{u,q}$ به میزان مشابه m:

$STD_{m,n}^{u,q} = \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \left| S_{m,q}(t_k, t_l) \right|^2 - \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2}{NT} \right)^2}{NT} \right)^{\frac{1}{2}}$

(11)

$E_{m,n}^{u,q} = \frac{N}{T} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2 \frac{\gamma^2}{NT}$

(10)

و افزایش متریس ارزوی، $STD_{m,n}^{u,q}$ به میزان مشابه m:

$STD_{m,n}^{u,q} = \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \left| S_{m,q}(t_k, t_l) \right|^2 - \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2}{NT} \right)^2}{NT} \right)^{\frac{1}{2}}$

(11)

$E_{m,n}^{u,q} = \frac{N}{T} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2 \frac{\gamma^2}{NT}$

(10)

و افزایش متریس ارزوی، $STD_{m,n}^{u,q}$ به میزان مشابه m:

$STD_{m,n}^{u,q} = \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \left| S_{m,q}(t_k, t_l) \right|^2 - \left(\frac{\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} |S_{m,q}(t_k, t_l)|^2}{NT} \right)^2}{NT} \right)^{\frac{1}{2}}$

(11)
در اکثریت تحقیق و اطمینان مقیاس شده است، وقوع خطاهای تفسیری با مقیاس‌های مختلف به شدت آمیخته و ارتفاع به دست‌آمده از آنالیز توالی‌های صفر و منفی، سیگناال‌های ولتاز و جریان قوی‌تر تفاوت توسیع ماتریالی‌های مختلف با مقایسه استانه از پیش تعبیه شده، تشخیص داده می‌شود (مقاورد مربوط به توالی صفر و منفی در بلوک تشخیص خطای امیدراس پایین و مقایره مربوط به توالی صفر و منفی در بلوک تشخیص خطای امیدراس بالا). محاسبه مقایر ارژی و انحراف میزان سیگناال‌های مختلف توسط تغییرات و تغییرات امیدراس پایین والو و امیدراس بالا با مقدار بالا، یکدیگر زمان‌کشیه ۴ مقدار ترمیم‌های

شکل (۵): بلوک دایکام تشخیص وقوع خطاهای

شابان ذکر که برای تشخیص وقوع خطاهای دوباره و سقف‌ها، به دلیل آنکه مقایسه مربوط به پارامترهای توالی‌های صفر مقایسه کوچکتری می‌باشد، لذا مقایسه مربوط به پارامترهای توالی منفی و منفی

نشریه علمی-پژوهشی کیفیت و بهره وری صنعت برق ایران سال ششم شماره ۱۲ پاییز وزمستان ۱۳۹۶

۱۱۲
تشخیص خطا با استفاده از توابع متغیر، منفی و صفر جریان و ولتاژ ناپاتزده ریزشی‌ها با دنر گرفتن عدد معیار نهایی در تولید رایزشی‌ها

دیدگاه گروهی تشخیص خطای بیش‌خوانی پنهان تامام و هر واضح است که با هر کاری در تشخیص روش بیش‌خوانی بالا سی‌سی‌رو به این نگاهی که یکی از پارامترهای تولیدی در حد استانه خود برگرگ تبدیل شده، نتایجی را دربر می‌گیرد. اگر نتیجه مثبت و منفی آن پارامتر در حد استانه خود برگرگ بود، این پارامتر نتیجه نزدیک خطای نیست. در مورد نتیجه منفی سیگنال و ولتاژ، از توجه به اینکه به همگان وقوع خطای مقدار این پارامتر کاهش می‌یابد. لذا تعیین متغیر این پارامتر در محاکم تشخیص خطای نیست.

۲- تشخیص محل خط‌بند: اگر با گذاری از محاسبه محل خط‌بند در درست شدن این است که که در الگوریتم تشخیص محل خط‌بند استفاده از منفی شده است. اگر با گذاری از محاسبه محل خط‌بند در درست شدن این است که که در الگوریتم تشخیص محل خط‌بند استفاده از منفی شده است.

\[f = \sum_{i=1}^{n} E_{i}^{\text{in}} - \sum_{j=1}^{m} E_{j}^{\text{out}}\]

که در آن \(ST\) به ترتیب بینگار تبدیلات \(ST\) و \(ST\) به ترتیب بینگار تبدیل

شانی در کنار این است که حدود استانه‌ای که برای تنش خطا تشخیص محل خط‌بند استفاده می‌شوند، با توجه به تولیدگری شبکه، بررسی رفتار انتها

نتیجه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران سال ششم شماره ۱۲ پاییز و اسفند ۱۳۹۴

113
خطاهای ممکن و آنالیز تغییرات مقادیر تمرکزهای شده از افزایش سیگنال‌های جریان و ولتاژ در مولفه‌ها و توالی های مختلف به هنگام تقوی خطا به دست می‌آید.

تکنیک قابل توجه که روی تغییرات خطای کار رفتار در این مقادیر بر طبق روش‌های قابل [12] توانایی تغییرات خطای در هر توبولوژی از شیب را دارد. چرا که روش ارائه شده مستقل از توبولوژی شیب مورد بررسی می‌باشد.

4- پیاده‌سازی روش پیشنهادی

به منظور بررسی میزان کارایی روش پیشنهادی، روش ارائه شده با استفاده از هر دو تبدیل موجک و S بر روی ریزشکده شکل (8) که جزئیات آن در [12] ارائه شده است، پیاده‌سازی شده، همان‌گونه که در توبولوژی ریزشکده شکل (8) مشخص هست، این ریزشکده در حالتی که دو کلید س1 و S2 بر وابسته، یک ریزشکده شبیعی بوده.

![شکل 7](7): بلوک دیاگرام تغییر هوت خطای رخ داده

نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران سال ششم شماره 12 پاییز و زمستان 1396
چکیده

پیشینه

یک تحقیق در مورد تشخیص خطای متقان در توبولوژی شعاعی (هر) گزارش شده است. این تحقیق به منظور بررسی توانایی روش پیشنهادی در تشخیص خطاهای متقان بوده است.

روش

روش اصلی در این تحقیق تعیین با استفاده از تابع سطح دچار خطای همانند S و S_a استفاده شده است. در این روش، خطای همانند روی خط اصلی و خطای همانند روی خط از دو جبهه الفبایی تابع متفاوت می‌باشد. در اینجا، خطای همانند روی خط از دو جبهه الفبایی تابع متفاوت می‌باشد.

نتایج

نتایج نهایی نشان داد که روش پیشنهادی بهبودیمندی‌ترین روش در تشخیص خطاهای متقان است. در این روش، خطای همانند روی خط از دو جبهه الفبایی تابع متفاوت می‌باشد.

کلیه نتایج نهایی نشان داد که روش پیشنهادی بهبودیمندی‌ترین روش در تشخیص خطاهای متقان است.

شکل ۸: روش پیشنهادی مورد مطالعه

جدول ۱: مقادیر آستانه نرمالیزه شده برای تبدیل های موجک و S

<table>
<thead>
<tr>
<th>تبدیل موجک</th>
<th>S</th>
<th>S_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع پارامتر</td>
<td>مقادیر</td>
<td>نوع پارامتر</td>
</tr>
<tr>
<td>پارامتر ۱</td>
<td>پارامتر ۲</td>
<td>پارامتر ۱</td>
</tr>
</tbody>
</table>

شناسه علمی: پژوهشی کیفیت و بهره وری صنعت برق ایران سال ششم شماره ۱۲ پاییز وزمان ۱۳۹۶

شکل ۸ ۱-۹ از تابع سطح دچار خطای همانند S و S_a استفاده شده است.
از مقایسه مقادیر به دست آمده برای $K_{3}^{W,T} = 0.203767$ و $K_{31}^{W,T} = 0.384$ با مقادیر $K_{31}^{W,T} = 0.610073$ طبق رابطه (18) نتیجه می‌شود که خطای رخ داده از نوع سفارقی باشد. لازم به ذکر است که زمان لازم برای تشخیص خطا در این روش

F_1

جدول (2): مقادیر نرم‌افزاری شده به دست آمده از تبدیل موجک برای مارژال‌های مختلف به از وقوع خطای F_1

<table>
<thead>
<tr>
<th>شماره</th>
<th>مارژال</th>
<th>احراز معیار مارژال‌های ارزی</th>
<th>احراز معیار مارژال‌های ارزی</th>
<th>احراز معیار مارژال‌های ارزی</th>
<th>احراز معیار مارژال‌های ارزی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>تاولی منفی</td>
<td>تاولی منفی</td>
<td>تاولی معنی‌دار</td>
<td>تاولی معنی‌دار</td>
</tr>
<tr>
<td>1</td>
<td>0.610073</td>
<td>0.436</td>
<td>0.484</td>
<td>0.436</td>
<td></td>
</tr>
</tbody>
</table>

جدول (3): مقادیر پارامترهای محاسبه شده توسط تبدیل موجک در مارژال‌های که وقوع خطای F_1 را تشخیص داده‌اند

<table>
<thead>
<tr>
<th>شماره</th>
<th>مارژال</th>
<th>اطلاعات جریان</th>
<th>مقادیر نمونه</th>
<th>شماره تاولی منفی</th>
<th>شماره تاولی منفی</th>
<th>شماره تاولی منفی</th>
<th>شماره تاولی منفی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>عبوری از مارژال</td>
<td>I_f</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>1</td>
<td>0.610073</td>
<td>0.436</td>
<td>0.484</td>
<td>0.436</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

برای تعيین محل وقوع خطای مقدار $K_f^{W,T}$ به همراه ارزو تاولی های

S

جدول (4) به ترتیب مقادیر نرم‌افزاری شده از وقوع معیار تاولی منفی و منفی شکل موج جریان برای از وقوع خطای F_1 را برای مارژال‌های مختلف به از وقوع خطا در نقطه F_1 شناسه می‌دهد. از جدول (4) مشخص است که وقوع خطا توسط F_1 شماره 7 و 12 تاولی داده شده است.
جدول ۵: مقادیر پارامترهای محاسبه شده توسط تبدیل S برای مازول های مختلف به وقوع خطای F۱

<table>
<thead>
<tr>
<th>شماره مازول</th>
<th>تحلیل جریان</th>
<th>انرژی متریس افزی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>مثبت</td>
<td>مثبت</td>
<td>مثبت</td>
<td>مثبت</td>
<td>مثبت</td>
<td>مثبت</td>
</tr>
<tr>
<td>SJKF005</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
</tr>
<tr>
<td>SJKF007</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
</tr>
<tr>
<td>SJKF009</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
</tr>
<tr>
<td>SJKF011</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
</tr>
<tr>
<td>SJKF013</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
</tr>
<tr>
<td>SJKF015</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
<td>۷۷۳۵۰</td>
</tr>
</tbody>
</table>

برای تبادل نوع خطای رخ داده نیز مقادیر شاخص‌های تحقیق‌های داده شده: به مقادیر مشابهی که توسط مثبت: همگنی، و مثبت: نه که خطای F۱ ۱۷۳۸۶۶۰۱ و K۲ T۱ همگنی، و مثبت: نه که خطای F۱ ۱۷۳۸۶۶۰۱ و K۲ T۱ همگنی، و مثبت: نه که خطای F۱ ۱۷۳۸۶۶۰۱ و K۲ T۱ همگنی، و مثبت: نه که خطای F۱ ۱۷۳۸۶۶۰۱ و K۲ T۱ همگنی، و مثبت: نه که خطای F۱ ۱۷۳۸۶۶۰۱ و K۲ T۱ همگنی، و مثبت: نه که خطای F۱ ۱۷۳۸۶۶۰۱ و K۲ T۱ همگنی، و مثبت: نه که خطای F۱ ۱۷۳۸۶۶۰۱ و K۲ T۱ همگنی، و مثبت: نه که خطای F۱ ۱۷۳۸۶۶۰۱ و K۲ T۱ همگنی، و مثبت: نه که خطای F۱ ۱۷۳۸۶۶۰۱ و K۲ T۱ H۱ ST به منظور بررسی توانایی روش پیشنهادی در تشخیص خطایهای نامثاقرن رخ داده در توبولوژی حلقه‌ی، که خطای تکرار با مقادیر خطا ۵ اهم در نقطه F۲ خطا ۹ ریزشکه نمونه شکل (۸) قرار داده می‌شود. لازم به ذکر است، جهت ایجاد نتایج حلقه‌ی، که خطای F۲ SJKF005 که در حال تغییر قابل بوده، به شدت می‌شود.
جدول (6): مقادیر نرم‌الzewه شده به دست آمده از تبدیل موجک برای مزول‌های مختلف بعد از قواعد خطای 2

<table>
<thead>
<tr>
<th>شماره</th>
<th>مزول</th>
<th>انحراف معیار مارس آرژی</th>
<th>ارزی مارس آرژی</th>
<th>انحراف معیار مارس آرژی</th>
<th>ارزی مارس آرژی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>تاولی صفر</td>
<td>تاولی مثبت</td>
<td>تاولی صفر</td>
<td>تاولی مثبت</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.965186</td>
<td>0.719373</td>
<td>28.505559</td>
<td>0.828836</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.31959</td>
<td>0.965186</td>
<td>0.4361</td>
<td>0.505559</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.219773</td>
<td>0.4361</td>
<td>0.505559</td>
<td>0.828836</td>
</tr>
</tbody>
</table>

نکته: در ادامه برای تعیین نوع خطای رخ داده، کوارتینی شکنون نوی خطای 2F در مزول 8 (مزولی که مبتنی مقادیر میانگین دقیق نمو و قواعد خط 2F ها است) با استفاده از مقادیر

\[E_{S,2F} = 0.197273 \]

و با محاسبه

\[E_{S,2F} = 0.719373 \]

و با مقادیر

\[E_{S,2F} = 0.965186 \]

یکسان هستند. با هدف تشکیل و قواعد خطای 2F، انحراف معیار تاولی صفر و مثبت وانز و چرخه به دست آمده از تبدیل مزول‌های مختلف بعد از قواعد خطای 2F

<table>
<thead>
<tr>
<th>x</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

برای مزول‌های مختلف بعد از قواعد خطای 2F نشان داده نشان داده می‌باشد.
نتیجه گیری‌های جدول ۱: مقادیر نرم‌الیمه محاسبه شده توسط تبدیل سری‌های مالزیها که در هر فرکانس خطا از تبدیل F۲ را تشخیص داده‌اند

<table>
<thead>
<tr>
<th>شماره مالزی</th>
<th>ارزی‌تأویل مسیر شکل‌موج جریان</th>
<th>ارزی‌تأویل مسیر شکل‌موج جریان</th>
<th>ارزی‌تأویل مسیر شکل‌موج جریان</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲۰۴۹۱۳۸</td>
<td>۱.۵۶۹۸۰۱</td>
<td>۲۰۴۹۱۳۸</td>
</tr>
<tr>
<td>۲</td>
<td>۲۰۴۹۱۳۸</td>
<td>۱.۵۶۹۸۰۱</td>
<td>۲۰۴۹۱۳۸</td>
</tr>
<tr>
<td>۳</td>
<td>۲۰۴۹۱۳۸</td>
<td>۱.۵۶۹۸۰۱</td>
<td>۲۰۴۹۱۳۸</td>
</tr>
<tr>
<td>۴</td>
<td>۲۰۴۹۱۳۸</td>
<td>۱.۵۶۹۸۰۱</td>
<td>۲۰۴۹۱۳۸</td>
</tr>
<tr>
<td>۵</td>
<td>۲۰۴۹۱۳۸</td>
<td>۱.۵۶۹۸۰۱</td>
<td>۲۰۴۹۱۳۸</td>
</tr>
<tr>
<td>۶</td>
<td>۲۰۴۹۱۳۸</td>
<td>۱.۵۶۹۸۰۱</td>
<td>۲۰۴۹۱۳۸</td>
</tr>
<tr>
<td>۷</td>
<td>۲۰۴۹۱۳۸</td>
<td>۱.۵۶۹۸۰۱</td>
<td>۲۰۴۹۱۳۸</td>
</tr>
<tr>
<td>۸</td>
<td>۲۰۴۹۱۳۸</td>
<td>۱.۵۶۹۸۰۱</td>
<td>۲۰۴۹۱۳۸</td>
</tr>
<tr>
<td>۹</td>
<td>۲۰۴۹۱۳۸</td>
<td>۱.۵۶۹۸۰۱</td>
<td>۲۰۴۹۱۳۸</td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۰۴۹۱۳۸</td>
<td>۱.۵۶۹۸۰۱</td>
<td>۲۰۴۹۱۳۸</td>
</tr>
<tr>
<td>۱۱</td>
<td>۲۰۴۹۱۳۸</td>
<td>۱.۵۶۹۸۰۱</td>
<td>۲۰۴۹۱۳۸</td>
</tr>
<tr>
<td>۱۲</td>
<td>۲۰۴۹۱۳۸</td>
<td>۱.۵۶۹۸۰۱</td>
<td>۲۰۴۹۱۳۸</td>
</tr>
</tbody>
</table>

عبارت ۴-۳: عكس العمل روش پیشنهادی در برای کلیدزینی

برای نشان دادن قابلیت اطمینان و معمایی، محاسبه توانایی فشار پیشنهادی در برای کلیدزینی احتمالی در شکست، عکس عمل روش پیشنهادی را در برای بیکاری نمونه کلیدزینی مورد بررسی قرار می‌دهد. برای این کار، فرض می‌گردد که هر دو S1 و S2 کلید با هستند. می‌توانیم با توجه به این داده، استفاده از تبدیل S4 در جدول ۲۰۴۹۱۳۸ از دست‌آمده است. در جدول ۲۰۴۹۱۳۸(۱) نمونه‌های مالزی، شده به دست آمده از تبدیل S4 را برای مالزیها مختلف بعد از خروج DG2 نشان می‌دهد.

جدول (۱۰): مقادیر نرم‌الیمه شده به دست آمده از تبدیل S4 برای مالزیها مختل علاوه بر مقادیر دیگر استقرار محدود تجویز گردیده‌اند.

نتیجه‌العملی: پژوهشی کیفیت به بهره وری متنبعت برچ اریال سال شماره ۱۲ پایه وزارت ۱۳۹۷
با مقایسه مقدار اندازه‌گیری شده توسط مازول، ها مفروضاتی از سنگینی در بررسی شدیده در شاخص از انتقال و حالت‌گذاری ایجاد به دلیل برخی از پایداری‌ها در بخش‌های مازول، ماهیت و حد استحکام مولکولی از سطح و همبستگی مایعی، مذابی، منفی و صفر (S)

Downloaded from ieijqp.ir at 20:52 +0430 on Sunday April 7th 2019