مدل سازی رفتار تکنولوژی‌های مختلف نیروگاهی در برنامه‌ریزی تعمیرات

به کمک نظریه بایزی ها در محیط تجدیدساختاریافته

بهنام دبایی ۱، کارشناس ارشد، محمدحسین جاویدی دشت بیاض ۲، استاد
۱- دانشکده مهندسی - دانشگاه فردوسی مشهد - مشهد - ایران
behnaz.dibaee@gmail.com
۲- دانشکده مهندسی - دانشگاه فردوسی مشهد - مشهد - ایران
h-javidi@um.ac.com

چکیده: گسترش خصوصیات سازی نیروگاه‌ها موجب تحول بنیادین در ساختار اقتصادی صنعت برق و رقابتی شدن فضای تبادل توان شده است. بدین ترتیب، جنبه‌های مختلف برنامه‌ریزی و بهره‌برداری سیستم قدرت نیز با چالش‌های متعددی مواجه گشته است. یکی از این چالش‌ها، چگونگی برنامه‌ریزی تعمیرات واحدهای نیروگاهی است. در فضای سنتی، چنین تصمیم‌هایی به شکل مرکزی و توسط دیسپاچینگ گرفته می‌شود. اما در محیط‌های تجدیدساختاریافته، با کاهش تعداد دیسپاچینگ، نیروگاه‌ها نیز در فرآیند تصمیم‌گیری تعمیرات نش نیا می‌کند. از یک سو دیسپاچینگ نگران پایبندی و قابلیت اطمینان سیستم قدرت جهت تأمین بیوستی برق مصرف کنندگان است و از سوی دیگر نیروگاه‌های خصوصی به دنبال حداکثرسازی سود خود هستند.

بتایان بر در محیط‌های تجدیدساختاریافته، بر خلاف محیط‌های سنتی، برنامه‌ریزی تعمیرات نیروگاه‌ها قابل بیان به فرم یک مساله بهینه‌سازی ساده نیست و به ابزار نیاز داریم که به خوبی رفتار متقابل عوامل ذهنی را مدل کند. با توجه به این توضیحات، می‌توان از نظریه بایزی ها جهت مدل سازی مسائل استفاده کرد. در این مقاله ابتدا مساله به شکل یک بایزی تعیین می‌شود. سپس با حل این بایزی، تعدادی نقطه تعادل بدست می‌آید که با تحلیل آن‌ها، رفتار تکنولوژی‌های مختلف نیروگاهی پیش‌بینی می‌گردد. در نهایت نیز از میان نقاط تعادل مختلف، به کمک شاخه رفاه اجتماعی، برنامه‌ریزی تعمیرات تعیین می‌شود.

واژه‌های کلیدی: برنامه‌ریزی تعمیرات، تئوری بایزی، تجدیدساختار سیستم‌های قدرت

تاریخ ارسال مقاله: ۱۳۹۵/۰۳/۲۲
تاریخ پذیرش مقاله: ۱۳۹۶/۰۳/۱۹

نام نویسنده مسئول: دکتر محمد حسین جاویدی دشت بیاض
نشان نویسنده مسئول: مشهد-میدان آزادی-گروه برق دانشکده مهندسی دانشگاه فردوسی مشهد
هدف اصلی این مقاله، تعمیرات اضطراری تکنولوژی‌های مختلف نیروگاهی در مساله‌های تعمیرات و در یک محیط تجربی تجربی‌های است. بدین جهت، تعداد می‌شوند تعداد افراد این تعداد افراد ناشی از طول بسته می‌آید. این نتایج از مقاله می‌تواند نیازهای زیست‌بخشی پیش‌بینی‌گری می‌گردد. در نهایت از همان نیازهای تعداد مختلف، به کمک شاخص فرآیند اجتماعی بهترین تعداد تعمیرات می‌شود.

۲- فرضیات مساله

پیش از آن‌که به تعمیرات و انجام‌های نیروگاهی باید در یکی از مراحل تعمیرات لازم نیازهای جهت تعمیرات بسته به طرفیت تنظیم به نیروگاهی مفاوت است. در این مقاله طول دوره انجام تعمیرات کاربردی و اثرات بهره‌برداری نیروگاهی و سیستم‌های مطرح شده است. همچنین تعداد این اثرات بهبودی در طول دوره انجام گردیده است. خلاصه تحقیق در حوزه تعمیرات و اثربخشی نیروگاهی به دست آمده است.

در محیطهای سننی، هدف اصلی پژوهش یک ت督یدوره‌ی انجام تعداد کمی از فعالیت‌های انجام داده می‌شود. اگرچه این مقاله مورد نیازی جهت تعمیرات باشد به طرفیت testimonیال واحد نیروگاهی مطرح است، این مقاله طول دوره انجام تعمیرات کاربردی و اثرات بهره‌برداری نیروگاهی و سیستم‌های مطرح شده است. همچنین تعداد این اثرات بهبودی در طول دوره انجام گردیده است. خلاصه تحقیق در حوزه تعمیرات و اثربخشی نیروگاهی به دست آمده است.

در محیطهای سننی، هدف اصلی پژوهش یک ت督یدوره‌ی انجام تعداد کمی از فعالیت‌های انجام داده می‌شود. اگرچه این مقاله مورد نیازی جهت تعمیرات باشد به طرفیت testimonیال واحد نیروگاهی مطرح است، این مقاله طول دوره انجام تعمیرات کاربردی و اثرات بهره‌برداری نیروگاهی و سیستم‌های مطرح شده است. همچنین تعداد این اثرات بهبودی در طول دوره انجام گردیده است. خلاصه تحقیق در حوزه تعمیرات و اثربخشی نیروگاهی به دست آمده است.

۳- نتایج و بیان‌های نهایی

نتایج این تحقیق نشان می‌دهد که تعداد تعمیرات و اثربخشی نیروگاهی به دست آمده است.

۴- توصیه‌های نهایی

نتایج این تحقیق نشان می‌دهد که تعداد تعمیرات و اثربخشی نیروگاهی به دست آمده است.
جدول (1): ظرفیت تولیدی و قیمت حذفی واحدی نیروگاهی نیازمند به تعمیر در شکله

<table>
<thead>
<tr>
<th>قیمت حذفی ($/MW)</th>
<th>ظرفیت تولیدی (MW)</th>
<th>شماره واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

جدول (2): کل تفاوتی مشروط به واحدهای نیازمند به تعمیر (MW)

<table>
<thead>
<tr>
<th>کل تفاوتی مشروط به واحدهای نیازمند به تعمیر (MW)</th>
<th>شماره واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1</td>
</tr>
<tr>
<td>180</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>90</td>
<td>4</td>
</tr>
</tbody>
</table>

در واقع قیمت تسویه در هر فصل، تنها ناشی از تصمیم واحدها برای انجام تعمیرات با تولید در آن فصل در نظر گرفته می‌شود.

3- محاسبه پاداش بازیگران

در قسمت قبل بیان شد که مالک هر واحد نیروگاهی به عنوان یک بازیگر شرکت کننده در بازی، باید استراتژی تعمیرات خود را مشخص کند. به این معنا که باید تصمیم گیرند تعمیرات خود را در چه فصلی از سال انجام دهد. اولین قدم در حل مسئله، این است که بازیگر هر کدک از بازیگران به ارزی هر مجموعه از استراتژی‌ها محاسبه شود. لازم است یک نیز تعمیر قیمت تسویهی بازار بر اساس تفاوت و ظرفیت باندی تولید مشابه به واحدهای نیروگاهی نیازمند به تعمیر در شکله است. با داشتن قیمت بازار برای هر فصل، پاداش هر بازیگر به ارزی هر مجموعه از استراتژی‌ها به راحتی طبق برابری 1 قابل محاسبه است.

\[\pi_i = \sum_{m=1}^{4} q_{i,m} \times (P - MC) \]

در رابطه 1، \(\pi_i \) سود بازیگر \(i \)ام، ناشی از فروش انرژی در کل سال است که به عنوان پاداش دو نفر گرفته شده است. در این رابطه، \(q_{i,m} \) به ترتیب بانک تولید واحد \(m \) برحسب مگاوات \(MG_i \) و \(P_k \) در فصل \(k \) به حساب در بر می‌گیرد. با این شرط، این معادله به قیمت حذفی واحدی در هر فصل به واحدهای نیازمند به تعمیر (MW) با ارزی هر مجموعه از استراتژی‌ها به راحتی محاسبه می‌شود.

به این ترتیب قیمت سود بازیگر به ارزی هر واحدی ایراد داشته است. با توجه به این اگر با مقدار مختلف بانک هر بازیگر که ناشی از انتخاب استراتژی‌های مختلف توسط وابسته به واحدهای نیازمند به تعمیر در شکله 1 می‌کنند لذا برای حساب‌رسانی مختلف برنامه‌های تعمیرات واحدها، قیمت تسویهی متغیر وجود دارد.
علاقه بین این، با مقایسه میزان تعمیرات و تلفاتی با در هر صفحه در نمودار ۱۲ بک همیشه قوی بین مصرف بیشتر و تعمیرات کمتر

شکل (۱۲): رابطه نسبی تعداد تعمیرات و تلفاتی با در هر صفحه

\[R \text{season} = \frac{C_i - RC \text{season} - L \text{season}}{C_i} \]
جدول (4): برشی شاخصان روزوی، نقاط تعادل مشتری، تعداد مشتری، بازیگران به زمان‌های مختلف برای هر بخش‌ی در نظر گرفته شده است.

جدول (5): شاخص روزو در فصل بازیگران 1396

نتایج علمی: نژوشهی کیفیتی و بهره‌وری صنعت برق ایران سال ششم شماره 11 بهار و تابستان 1396
7- انتخاب برنامه تعمیرات بر اساس بیشترین رفاه اجتماعی توسط بهره‌دار مستقل سیستم

ارگچ نیروگاهی در محیط‌های تبدیل‌سازی‌های در سیستم‌های از سواد به شکل مستقل دربرداری در اثر مربوط به واحد‌های خود تدوین گیرد. می‌تواند، لازم است بهره‌دار مستقل در موارد جهت حفظ پایایی فنی و اقتصادی سیستم وار عمل شود. یکی از این موارد برنامه‌بری تعمیرات است. در این مسأله بهره‌دار باید با در نظر گرفتن قابلیت تعمیراتی سیستم از یکی از فرد و سویّ نیروگاهی از طرف دیگر، برنامه‌بری تعمیرات را به روش‌های مختلف کنترل کند. یکی از روش‌ها با توجه به قوانین مربوط به واقعیت، می‌تواند شامل طیف گسترده‌ای از اقدامات تشکیل یابد. بکس این طبقه، ایجاد زمان تعمیرات واحدها با صورت اجباری است. در زمان‌بندی بازگشت بهربردار می‌تواند به کمک برنامه‌های تشییعی و نسبی، عمیقاً در زمان نیروگاهی دقیق‌تر در انتخاب زمان‌بندی ایده‌ی قابلیت پانش و جریمه، برآوردزی تعمیرات ایجادی از این نحو به‌طور همزمان با ایجاد تغییر پایداری سیستم و در همه نقاط تعادل را به عنوان گسترش ورودی در نظر گرفت.

در مبحث ۵، مثال‌هایی که در نظر افتاده بر اساس آمیزش کنندگی سطح مشخصی از قابلیت اطمنیت و میزان معیین سود برای هر یک از واحد‌های نیروگاهی اسپ. بهره‌دار باید برنامه‌های تعمیرات مانند تصمیم‌گیری بر اساس مصایل‌های از قابلیت اطمنیت و سیستم و مجموع سود تولید کننگان تبعین کند. شایع استفاده از شاخص برنامه‌های اجتماعی انتظار 15 در نظر گرفتن احتمال زاست درختنی بر هر برنامه تعمیرات و همچنین ارزش انرژی از دست رفته بتواند به عنوان اساس این منطقی به کار رود.

8- نتیجه‌گیری

در این مقاله سالهای برنامه‌بری تعمیرات پیشگیری‌های تعددی وارد نیروگاهی، در یک محیط تجدیدساختاری مشبک به گرایش پژوهشی بازمی‌رود. در نظر گرفتن برنامه‌بری تعمیرات در مورد بکس واحدهای نیروگاهی در فضای مورد فهم‌پذیری شد. مطابق نتایج شبیه‌سازی در فصل تاسیس که نتایج زاست به بهتری واحدهای تعمیر نشان داد. از طرفی نیز ثابت شد که ارقامی تعیین نموده و با طرفتی بالا در فصل زمان‌بندی که تعیین کم است واحدهای با قابلیت و فرم تعمیرات در مسیر، فصل پایداری که میزان عمل بر سطح می‌کند. از جمله مراحل تعمیراتی بهره‌دار می‌تواند استفاده می‌کند. میزان گزارش بهره‌دار مستقل سیستم وار بر روی سیستم‌های نمونه‌ی دیگر، مشاهده شده که واحدهای

1 availability
2 preventive maintenance
3 Time Based Maintenance (TBM)
4 periodic-based maintenance
5 failure
6 failure time
7 Simulated Annealing
8 Tabu Search
9 Particle Swarm Optimization
10 social welfare
11 uniform
12 Loss Of Load Probability (LOLP)
13 Expected Energy Not Supplied (EENS)
14 capacity reserve margin
15 expected social welfare